Optimising the Vase Life of Cut Hydrangeas: A Review of the Impact of Various Treatments
Abstract
:1. Introduction
2. Vase Life of Cut Hydrangea Flowers
3. Postharvest Factors Influencing the Vase Life of Cut Flowers
3.1. Water Balance
3.2. Carbohydrates Deterioration
3.3. Ethylene Sensitivity
4. Effect of Treatments on the Vase Life of Cut Hydrangea Flowers
4.1. Effect of Sugars on Vase Life of Cut Hydrangea Flowers
4.2. Effect of Biocides on Vase Life of Cut Hydrangea Flowers
4.3. Effect of Abcisic Acid (ABA) on Vase Life of Cut Hydrangea Flowers
4.4. Effect of Essential Oil Compounds on Vase Life of Cut Hydrangea Flowers
4.5. Effect of Commercial Preservative Solutions on Vase Life of Cut Hydrangea Flowers
5. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Xue, T.; Gao, T.; Liang, Y.; Smets, E.F.; Gadagkar, S.R.; Yu, S. An updated infrageneric classification based on phylogenomics and character evolution in Hydrangea (Hydrangeaceae). Taxon 2024, 73, 503–518. [Google Scholar] [CrossRef]
- Mendoza, C.G.; Salas, E.M.M.; Goetghebeur, P.; Wanke, S.; Samain, M.S. Molecular phylogeny, character evolution, and biogeography of Hydrangea section Cornidia, Hydrangeaceae. Front. Plant Sci. 2021, 12, 661522. [Google Scholar] [CrossRef]
- Khaing, M.T.; Jung, H.J.J.; Kim, J.B.; Han, T.H. Characterization of hydrangea accessions based on morphological and molecular markers. Hortic. Sci. Technol. 2018, 36, 598–605. [Google Scholar] [CrossRef]
- Kitamura, Y.; Ueno, S.; Aizawa, H.; Teoh, W. Differences in vase lives of cut hydrangea flowers harvested at different developmental stages. Hortic. J. 2018, 87, 274–280. [Google Scholar] [CrossRef]
- Kazaz, S.; Kılıç, T.; Doğan, E.; Sekmen, Ş. Vase life extension of cut hydrangea (Hydrangea macrophylla) flowers. J. Hortic. Sci. Biotechnol. 2020, 95, 325–330. [Google Scholar] [CrossRef]
- Kitamura, Y.; Kato, Y.; Yasui, T.; Aizawa, H.; Ueno, S. Relation between increases in stomatal conductance of decorative sepals and the quality of antique-stage cut hydrangea flowers. Hortic. J. 2017, 86, 87–93. [Google Scholar] [CrossRef]
- Da Costa, L.C.; de Araujo, F.F.; Ribeiro, W.S.; de Sousa Santos, M.N.; Finger, F.L. Postharvest physiology of cut flowers. Ornam. Hortic. 2021, 27, 374–385. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Song, Y.; Zhu, J.; Shang, W.; Jiang, L.; Liu, W.; He, S.; Shen, Y.; Shi, L.; et al. ClO2 prolongs the vase life of Paeonia lactiflora ‘Hushui Dangxia’ cut flowers by inhibiting bacterial growth at the stem base. Horticulturae 2024, 10, 732. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Wang, S.; Fan, X.; Liu, Y.; Zhao, R.; Hou, H.; Zha, Y.; Zou, J. The combination of graphene oxide and preservatives can further improve the preservation of cut flowers. Front. Plant Sci. 2023, 14, 1121436. [Google Scholar] [CrossRef]
- Haq, A.U.; Farooq, S.; Lone, M.L.; Parveen, S.; Altaf, F.; Tahir, I. Flower senescence coordinated by ethylene: An update and future scope on postharvest biology in the “buttercup” family. J. Plant Growth Regul. 2024, 43, 402–422. [Google Scholar] [CrossRef]
- Wojciechowska, N.; Sobieszczuk-Nowicka, E.; Bagniewska-Zadworna, A. Plant organ senescence–regulation by manifold pathways. Plant Biol. 2018, 20, 167–181. [Google Scholar] [CrossRef]
- Sasi, J.M.; Gupta, S.; Singh, A.; Kujur, A.; Agarwal, M.; Katiyar-Agarwal, S. Know when and how to die: Gaining insights into the molecular regulation of leaf senescence. Physiol. Mol. Biol. Plants 2022, 28, 1515–1534. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Altaf, F.; Farooq, S.; Lone, M.L.; Ul Haq, A.; Tahir, I. The swansong of petal cell death: Insights into the mechanism and regulation of ethylene-mediated flower senescence. J. Exp. Bot. 2023, 74, 3961–3974. [Google Scholar] [CrossRef]
- Sanjbod, R.N.; Chamani, E.; Hir, Y.P.; Estaji, A. Investigation of the cell structure and organelles during autolytic PCD of Antirrhinum majus “Legend White” petals. Protoplasma 2023, 260, 419–435. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A. The effect of a sugar-containing preservative on senescence-related processes in cut clematis flowers. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 432–440. [Google Scholar] [CrossRef]
- Sun, X.; Qin, M.; Yu, Q.; Huang, Z.; Xiao, Y.; Li, Y.; Ma, N.; Gao, J. Molecular understanding of postharvest flower opening and senescence. Mol. Hortic. 2021, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, K.; Yamada, T.; Ichimura, K. Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J. Exp. Bot. 2016, 67, 5909–5918. [Google Scholar] [CrossRef]
- Iakimova, E.T.; Ty, A.J.; Hertog, M.L.A.T.M.; Nicolaï, B.M.; Woltering, E.J. Programmed cell death and postharvest deterioration of fresh horticultural products. Postharvest Biol. Technol. 2024, 214, 113010. [Google Scholar] [CrossRef]
- Kuromori, T.; Seo, M.; Shinozaki, K. ABA transport and plant water stress responses. Trends Plant Sci. 2018, 23, 513–522. [Google Scholar] [CrossRef]
- Yamane, K. Markets of ornamental plants and postharvest physiology in cut flowers. Rev. Agric. Sci. 2015, 3, 36–39. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, M.; Tang, W.; Liu, D.; Zhou, S.; Meng, J.; Tao, J. Nano-silver modifies the vase life of cut herbaceous peony (Paeonia lactiflora Pall.) flowers. Protoplasma 2018, 255, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Naing, A.H.; Win, N.M.; Hang, J.S.; Lim, K.B.; Kim, C.K. Role of nanosilver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front. Plant. Sci. 2017, 8, 1590. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Ueno, S. Inhibition of transpiration from the inflorescence extends the vase life of cut hydrangea flowers. Hortic. J. 2015, 84, 156–160. [Google Scholar] [CrossRef]
- Da Costa, L.C.; Finger, F.L. Flower opening and vase life of gladiolus cultivars: The sensitivity to ethylene and the carbohydrate content. Ornam. Hortic. 2016, 22, 147–153. [Google Scholar] [CrossRef]
- Yang, H.; Lim, S.; Lee, J.H.; Choi, J.W.; Shin, I.S. Influence of solution combination for postharvest treatment stage on vase life of cut hydrangea flowers (Hydrangea macrophylla cv. ‘Verena’). Horticulturae 2021, 7, 406. [Google Scholar] [CrossRef]
- Kitamura, Y.; Uemachi, T.; Kato, Y. Non-decorative floral organs largely contribute to transpiration and vase life of cut hydrangea flowers with lacecap inflorescence. Hortic. J. 2017, 86, 263–268. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H.; Zhao, B. Glycolic acid addition enhances lead uptake and transport by Hydrangea macrophylla (Thunb.) Ser. of different plant ages. Environ. Technol. Innov. 2024, 36, 103877. [Google Scholar] [CrossRef]
- Aros, D.; Silva, C.; Char, C.; Prat, L.; Escalona, V. Role of flower preservative solutions during postharvest of Hydrangea macrophylla cv. Bela. Cienc. Investig. Agrar. 2016, 43, 418–428. [Google Scholar] [CrossRef]
- Lee, J.H.; Oh, S.I.; Lee, J.S.; Lee, A.K. Change in quality of cut hydrangea flowers as affected by storage period and temperature. Hortic. Sci. Technol. 2019, 37, 256–263. [Google Scholar] [CrossRef]
- Kazaz, S.; Kılıç, T.; Şahin, E.G.E. Extending the vase life of cut hydrangea flowers by preservative solutions. Acta Sci. Pol. Hortorum Cultus 2020, 19, 95–103. [Google Scholar] [CrossRef]
- Schiappacasse, F.; Moggia, C.; Contreras, R. Studies with long term storage of cut flowers of Hydrangea macrophylla. Idesia 2014, 32, 71–76. [Google Scholar] [CrossRef]
- Rabiza-Świder, J.; Skutnik, E.; Jędrzejuk, A. The effect of preservatives on water balance in cut clematis flowers. J. Horticul. Sci. Biotechnol. 2017, 92, 270–278. [Google Scholar] [CrossRef]
- Kazaz, S.; Doğan, E.; Kılıç, T.; Şahin, E.G.E.; Seyhan, S. Influence of holding solutions on vase life of cut hydrangea flowers (Hydrangea macrophylla Thunb.). Fresenius Environ. Bull. 2019, 28, 3554–3559. [Google Scholar]
- Suntipabvivattana, N.; Jaisao, T.; Kitamura, Y. Combined treatment of 8-hydroxyquinoline and glucose on cut hydrangea flowers. Bull. Shinshu Univ. Alpine Field Cent. 2020, 18, 19–27. [Google Scholar]
- Gu, J.J.; Zhang, J.L.; Gao, J.P.; Wu, H.Z. Postharvest water change and the influencing factors in the different cut Hydrangea macrophylla cultivars. J. South. Agric. 2020, 51, 2781–2788. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M.; Carlson, A.S.; Blazich, F.A. Water quality effects on postharvest performance of cut calla, hydrangea, and snapdragon. Sci. Hortic. 2013, 153, 26–33. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Liu, J.; Dong, X.; Zhang, H.; Jeong, B.R. Prolonged post-harvest preservation in lettuce (Lactuca sativa L.) by reducing water loss rate and chlorophyll degradation regulated through lighting direction-induced morphophysiological improvements. Plants 2024, 13, 2564. [Google Scholar] [CrossRef]
- Halevy, A.H.; Mayak, S. Senescence and postharvest physiology of cut flowers, part 1. Hortic. Rev. 1979, 1, 204–236. [Google Scholar] [CrossRef]
- Van Doorn, W.G. Is petal senescence due to sugar starvation? Plant Physiol. 2004, 134, 35–42. [Google Scholar] [CrossRef]
- Li, Q.; Chai, L.; Tong, N.; Yu, H.; Jiang, W. Potential carbohydrate regulation mechanism underlying starvation-induced abscission of tomato flower. Int. J. Mol. Sci. 2022, 23, 1952. [Google Scholar] [CrossRef]
- Van Doorn, W.G. Role of soluble carbohydrates in flower senescence: A survey. Acta Hortic. 2001, 543, 179–183. [Google Scholar] [CrossRef]
- Pun, U.K.; Ichimura, K. Role of sugars in senescence and biosynthesis of ethylene in cut flowers. Jpn. Agric. Res. Q. 2003, 37, 219–224. [Google Scholar] [CrossRef]
- Min, Q.; Marcelis, L.F.; Nicole, C.C.; Woltering, E.J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life. Front. Plant Sci. 2021, 12, 615355. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yan, L.; Zhang, C.; Kong, X.; Zheng, Y.Q.; Dong, L. Glucose supply induces PsMYB2-mediated anthocyanin accumulation in Paeonia suffruticosa ‘Tai Yang’ cut flower. Front. Plant Sci. 2022, 13, 874526. [Google Scholar] [CrossRef]
- Liu, X.; Teng, R.; Xiang, L.; Li, F.; Chen, K. Sucrose-delaying flower color fading associated with delaying anthocyanin accumulation decrease in cut chrysanthemum. PeerJ 2023, 11, e16520. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lyu, T.; Lyu, Y. Study on the flower induction mechanism of Hydrangea macrophylla. Int. J. Mol. Sci. 2023, 24, 7691. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Kim, Y.J.; Nguyen, B.V.; Park, Y.E.; Sathasivam, R.; Kim, J.K.; Park, S.U. Profiles of secondary metabolites (phenolic acids, carotenoids, anthocyanins, and galantamine) and primary metabolites (carbohydrates, amino acids, and organic acids) during flower development in Lycoris radiata. Biomolecules 2021, 11, 248. [Google Scholar] [CrossRef]
- Niu, X.X.; Chen, X.W.; Se, H.; Eneji, A.E.; Guo, Y.H.; Dong, X.H. Changes of secondary metabolites and trace elements in Gentiana macrophylla flowers: A potential medicinal plant part. Chin. Herb. Med. 2014, 6, 145–151. [Google Scholar] [CrossRef]
- Gul, F.; Tahir, I.; Shahri, W. Flower development and senescence in Narcissus tazetta ‘Kashmir Local’. Folia Hortic. 2015, 27, 115–121. [Google Scholar] [CrossRef]
- Cavasini, R.; Laschi, D.; Tavares, A.R.; Lima, G.P.P. Carbohydrate reserves on postharvest of lisianthus cut flowers. Ornam. Hortic. 2018, 24, 12–18. [Google Scholar] [CrossRef]
- Khan, S.; Alvi, A.F.; Khan, N.A. Role of ethylene in the regulation of plant developmental processes. Stresses 2024, 4, 28–53. [Google Scholar] [CrossRef]
- In, B.C.; Ha, S.T.; Lee, Y.S.; Lim, J.H. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol. Technol. 2017, 131, 74–83. [Google Scholar] [CrossRef]
- Lauridsen, U.B.; Lütken, H.; Müller, R. Ethylene responses in Hydrangea macrophylla-leaf abscission, flower development and postharvest performance. Eur. J. Hortic. Sci. 2015, 80, 149–154. [Google Scholar] [CrossRef]
- Wongjunta, M.; Wongs-Aree, C.; Salim, S.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Involvement of ethylene in physiological processes determining the vase life of various hybrids of Mokara orchid cut flowers. Agronomy 2021, 11, 160. [Google Scholar] [CrossRef]
- Gong, B.; Huang, S.; Ye, N.; Yuan, X.; Ma, H. Pre-harvest ethylene control affects vase life of cut rose ‘Carola’ by regulating energy metabolism and antioxidant enzyme activity. Hortic. Environ. Biotechnol. 2018, 59, 835–845. [Google Scholar] [CrossRef]
- Ha, S.T.; Lim, J.H.; In, B.C. Extension of the vase life of cut roses by both improving water relations and repressing ethylene responses. Hortic. Sci. Technol. 2019, 37, 65–77. [Google Scholar] [CrossRef]
- Serek, M.; Sisler, E.C.; Reid, M.S. Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul. 1995, 16, 93–97. [Google Scholar] [CrossRef]
- Koohkan, F.; Ahmadi, N.; Ahmadi, S.J. Improving vase life of carnation cut flowers by silver nano-particles acting as anti-ethylene agent. J. Appl. Hortic. 2014, 16, 210–214. [Google Scholar] [CrossRef]
- Kondo, M.; Nakajima, T.; Shibuya, K.; Ichimura, K. Comparison of petal senescence between cut and intact carnation flowers using potted plants. Sci. Hortic. 2020, 272, 109564. [Google Scholar] [CrossRef]
- Kılıç, T.; Kazaz, S.; Doğan, E.; Şahin, E.G.E. Effects of some essential oil compounds on vase life of cut hydrangea flowers. Ziraat Fak. Derg. 2020, 13, 172–179. [Google Scholar]
- Amnuaykan, P. The addition of glucose in holding solution enhances vase life and inflorescence quality of cut hydrangea flower over the application of sucrose or mannitol. J. Appl. Hortic. 2023, 25, 25–31. [Google Scholar] [CrossRef]
- Skutnik, E.; Jędrzejuk, A.; Rabiza-Świder, J.; Rochala-Wojciechowska, J.; Latkowska, M.; Łukaszewska, A. Nanosilver as a novel biocide for control of senescence in garden cosmos. Sci. Rep. 2020, 10, 10274. [Google Scholar] [CrossRef] [PubMed]
- Mashhadian, V.N.; Tehranifar, A.; Bayat, H.; Selaharzi, Y. Salicylic and citric acid treatments improve the vase life of cut chrysanthemum flowers. J. Agric. Sci. Technol. 2012, 14, 879–887. [Google Scholar]
- Jhanji, S.; Kaur, G.; Chumber, M. Deciphering flower senescence physiology: Advancements in post-harvest storage and preservation techniques for enhancing longevity. J. Hortic. Sci. Biotechnol. 2025, 100, 164–195. [Google Scholar] [CrossRef]
- Bika, R.; Palmer, C.; Alexander, L.; Baysal-Gurel, F. Comparative performance of reduced-risk fungicides and biorational products in management of postharvest botrytis blight on bigleaf hydrangea cut flowers. HortTechnology 2020, 30, 659–669. [Google Scholar] [CrossRef]
- Ku, B.S.; Cho, M.S. Vase life and quality as affected by various holding solution of cut Hydrangea macrophylla. Flower Res. J. 2014, 22, 12–20. [Google Scholar] [CrossRef]
- Kim, H.W.; Han, T.H.; Lee, Y.B. Improving the quality of cut hydrangea flowers on treatments of CO2 fertilization under pre-harvest and slightly acidic electrolyzed (HOCl) water under postharvest. Hortic. Sci. Technol. 2023, 41, 91–99. [Google Scholar] [CrossRef]
- Seyf, M.; Khalighi, A.; Mostofi, Y.; Naderi, R. Study on the effect of aluminum sulfate treatment on postharvest life of the cut rose ‘Boeing’ Rosa hybrida cv. Boeing). J. Hortic. Sci. Biotechnol. 2012, 16, 128–132. [Google Scholar]
- Moshkov, I.E.; Novikova, G.V.; Hall, M.A.; George, E.F. Plant growth regulators III: Gibberellins, ethylene, abscisic acid, their analogues and inhibitors; miscellaneous compounds. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 235–238. ISBN 978-1-4020-5005-3. [Google Scholar]
- van Iersel, M.W.; Seader, K.; Dove, S. Exogenous abscisic acid application effects on stomatal closure, water use, and shelf life of hydrangea (Hydrangea macrophylla). J. Environ. Hort. 2009, 27, 234–238. [Google Scholar] [CrossRef]
- Feng, J.; Chen, S.; Chen, H.; Dai, L.; Qi, X.; Ahmad, M.Z.; Gao, K.; Qiu, S.; Jin, Y.; Deng, Y. Metabolomics reveals a key role of salicylic acid in embryo abortion underlying interspecific hybridization between Hydrangea macrophylla and H. arborescens. Plant Cell Rep. 2024, 43, 248. [Google Scholar] [CrossRef]
- Mishra, V.; Dwivedi, S.K. Postharvest management of fresh cut flowers. In Postharvest Biology and Technology of Horticultural Crops; Apple Academic Press: Waretown, NJ, USA, 2015; pp. 347–399. [Google Scholar] [CrossRef]
- Waterland, N.L.; Jones, M.L. Exogenous aba applications delay drought-induced wilting but cause leaf and flower abscission in Fuchsia. Acta Hortic. 2013, 970, 29–35. [Google Scholar] [CrossRef]
- Pagter, M.; Liu, F.; Jensen, C.R.; Petersen, K.K. Effects of chilling temperatures and short photoperiod on PSII function, sugar concentrations and xylem sap ABA concentrations in two Hydrangea species. Plant Sci. 2008, 175, 547–555. [Google Scholar] [CrossRef]
- Huang, X.; Lyu, T.; Li, Z.; Lyu, Y. Hydrangea arborescens ‘Annabelle’ flower formation and flowering in the current year. Plants 2023, 12, 4103. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.I.; Kim, J.; Lee, A.K. Comparison of shelf life and quality of potted hydrangea ‘speedy red’ under different abscisic acid spray concentrations. Hortic. Sci. Technol. 2021, 39, 615–624. [Google Scholar] [CrossRef]
- Crocoll, C. Biosynthesis of the Phenolic Monoterpenes, Thymol and Carvacrol, by Terpene Synthases and Cytochrome P450s in Oregano and Thyme. Ph.D. Dissertation, Frie-drich-Schiller-Universitat, Jena, Germany, 2011; 143p. Available online: https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00023478/Crocoll/Dissertation.pdf (accessed on 13 April 2025).
- Memar, M.Y.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kafil, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Res. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Ahmad, I.; Dole, J.M. Homemade floral preservatives affect postharvest performance of selected specialty cut flowers. HortTechnology 2014, 24, 384–393. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutrisno; Skutnik, E.; Rabiza-Świder, J. Optimising the Vase Life of Cut Hydrangeas: A Review of the Impact of Various Treatments. Agronomy 2025, 15, 1124. https://doi.org/10.3390/agronomy15051124
Sutrisno, Skutnik E, Rabiza-Świder J. Optimising the Vase Life of Cut Hydrangeas: A Review of the Impact of Various Treatments. Agronomy. 2025; 15(5):1124. https://doi.org/10.3390/agronomy15051124
Chicago/Turabian StyleSutrisno, Ewa Skutnik, and Julita Rabiza-Świder. 2025. "Optimising the Vase Life of Cut Hydrangeas: A Review of the Impact of Various Treatments" Agronomy 15, no. 5: 1124. https://doi.org/10.3390/agronomy15051124
APA StyleSutrisno, Skutnik, E., & Rabiza-Świder, J. (2025). Optimising the Vase Life of Cut Hydrangeas: A Review of the Impact of Various Treatments. Agronomy, 15(5), 1124. https://doi.org/10.3390/agronomy15051124