Biochar Derived from Agro-Industrial Waste: Applications in Agricultural and Environmental Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Evaluation of Biochar Properties
2.2. Vegetation Experiment
2.3. Laboratory Experiment
2.4. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of Biochar
3.2. Vegetation Experiment
3.3. Laboratory Experiment
Changes in Zn2+, Cu2+, Ca2+, Mg2+, K+, and Na+ Content in the Extraction Solution
4. Discussion
4.1. Impact of Biochar on Soil Properties
4.2. Effect of Biochar on Yield and Macronutrient Content of Plants
4.3. Adsorption of Zn and Cu onto Biochar
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIO1 | Biochar from wheat bran |
BIO2 | Biochar from cherry pits |
TOC | Total organic carbon |
TN | Total nitrogen |
References
- Fernández-Ugalde, O.; Ballabio, C.; Lugato, E.; Scarpa, S.; Jones, A. Assessment of Changes in Topsoil Properties in LUCAS Samples Between 2009/2012 and 2015 Surveys, EUR 30147 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-17430-1. [Google Scholar]
- Montanarella, L.; Panagos, P. Soil Security for the European Union. Soil Secur. 2021, 4, 100009. [Google Scholar] [CrossRef]
- Klimkowicz-Pawlas, A.; Ukalska-Jaruga, A.; Smreczek, B. Soil quality index for agricultural areas under different levels of anthropopressure. Int. Agrohys. 2019, 33, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Sosulski, T.; Szara, E.; Stępien, W.; Szymańska, M.; Komenda-Borowska, M. Carbon and nitrogen leaching in long-term experiments and DOC/N-NO3- ratio in drainage water as an indicator of denitrification potential in different fertilization and crop rotation systems. Fresenius Environ. Bull. 2016, 25, 2813–2824. [Google Scholar]
- Laishram, J.; Saxena, K.G.; Maikhuri, R.K.; Rao, K.S. Soil quality and soil health: A review. Int. J. Ecol. Environ. Sci. 2012, 38, 19–37. [Google Scholar]
- Siebielec, G.; Łopatka, A.; Smreczak, B.; Kaczyński, R.; Siebielec, S.; Koza, P.; Dach, J. Materia organiczna w glebach mineralnych Polski. Studia i Rap. IUNG-PIB 2020, 64, 9–30. (In Polish) [Google Scholar]
- Paustian, K.; Andrén, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; Van Noordwijk, M.; Woomer, P.L. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 1997, 13, 23–244. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, M.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2012, 59, 1017–1040. [Google Scholar] [CrossRef]
- Sosulski, T.; Korc, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. 2011, 18, 601–609. [Google Scholar]
- Hewelke, E.; Mielnik, L.; Weber, J.; Perzanowska, A.; Jamroz, E.; Gozdowski, D.; Szacki, P. Chemical and physical aspects of soil health resulting from long-term no-till management. Sustainability 2024, 16, 9682. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Wang, J.; Shi, L.; Zhai, L.; Zhang, H.; Wang, S.; Zou, J.; Shen, Z.; Lian, C.; Chen, Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicol. Environ. Saf. 2021, 207, 111261. [Google Scholar] [CrossRef] [PubMed]
- Zaman, C.Z.; Pal, K.; Yehye, W.A.; Suresh Sagadevan, S.; Shah, S.T.; Adebisi, G.A.; Emy Marliana, E.; Rafique, R.F.; Johan, R.B. Pyrolysis: A sustainable way to generate energy from waste. In Pyrolysis; InTech Open: London, UK, 2017. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, B.; Chen, L.; Li, Y.; Li, W.; Luo, Z. Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chem. Speciat. Bioavail. 2018, 30, 57–67. [Google Scholar] [CrossRef]
- Almutairi, A.A.; Ahmad, M.; Rafique, M.I.; Al-Wabel, M.I. Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. J. Saudi Soc. Agric. Sci. 2023, 22, 25–34. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D. Stability of black carbon in soils across a climatic gradient. Geophys. Res. 2008, 113, G02027. [Google Scholar] [CrossRef]
- Rakshit, R.; Patra, A.K.; Das, D. Biochar application in soils mitigate climate change through carbon sequestration. Int. J. Biores. Stress Manag. 2012, 3, 079–083. [Google Scholar]
- Jiang, Y.; Li, T.; Xu, X.; Sun, J.; Pan, G.; Cheng, K. A global assessment of the long-term effects of biochar application on crop yield. Curr. Res. Environ. Sustain. 2024, 7, 100247. [Google Scholar] [CrossRef]
- Naeem, M.B.; Jahan, S.; Rashid, A.; Shah, A.A.; Raja, V.; El-Sheikh, M.A. Improving maize yield and drought tolerance in field conditions through activated biochar application. Sci. Rep. 2024, 14, 25000. [Google Scholar] [CrossRef]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Fenton, O.; Szara, E.; Thornton, S.F.; Malina, G. Holistic Assessment of biochar and brown coal waste as organic amendments in sustainable environmental and agricultural applications. Water Air Soil Pollut. 2020, 232, 106. [Google Scholar] [CrossRef]
- Zama, E.F.; Zhu, Y.G.; Reid, B.J.; Sun, G.X. The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. J. Clean. Prod. 2017, 148, 127–136. [Google Scholar] [CrossRef]
- Thomas, E.; Borchard, N.; Sarmiento, C.; Atkinson, R.; Ladd, B. Key factors determining biochar sorption capacity for metal contaminants: A literature synthesis. Biochar 2020, 2, 151–163. [Google Scholar] [CrossRef]
- Alsawy, T.; Rashad, E.; El-Qelish, M. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. npj Clean Water 2022, 5, 29. [Google Scholar] [CrossRef]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252 Pt A, 846–855. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Wang, Y.; Li, H.; Zhang, Q.; Chen, J.; Zhao, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Tehreem, S.; Yousra, M.; Alamer, K.H.; Alsudays, I.M.; Sarwar, S.; Kamal, A.; Naeem, S. Analysis of the role of various biochar in the remediation of heavy metals in contaminated water and its kinetics study. J. Saudi Soc. Agric. Sci. 2022, 26, 101518. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Rodriguez-Vill, A.; Selwyn-Smith, H.; Enunwa, L.; Smail, I.; Covelo, E.F.; Sizmur, T. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Environ. Sci. Pollut. Res. 2018, 25, 7730–7739. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Liang, M.; Lu, L.; He, H.; Li, J.; Zhu, Z.; Zhu, Y. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Norbu, N.; Wang, Z. Remediation of biochar on heavy metal polluted soils. IOP Conf. Ser. Earth Environ. Sci. 2017, 108, 042113. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, K.; Han, L.; Chen, Y.; Liu, J.; Xing, B. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol. Biochem. 2022, 169, 108657. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Polifka, S.; Fischer, D.; Glaser, B. Long-term biochar and soil organic carbon stability—Evidence from field experiments in Germany. Sci. Total Environ. 2024, 954, 176340. [Google Scholar] [CrossRef]
- Sosulski, T.; Srivastava, A.K.; Ahrends, H.E.; Smreczak, B.; Szymańska, M. Carbon storage potential and carbon dioxide emissions from mineral-fertilized and manured soil. Appl. Sci. 2023, 13, 4620. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Rutkowska, B. The influence of mineral fertilization and legumes cultivation on the N2O soil emissions. Plant Soil Environ. 2015, 61, 529–536. [Google Scholar] [CrossRef]
- Ding, X.; Li, G.; Zhao, X.; Lin, Q.; Wang, X. Biochar application significantly increases soil organic carbon under conservation tillage: An 11-year field experiment. Biochar 2023, 5, 28. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, Y.; Han, W.; Chen, J.; Lai, J.; Wang, Y. Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance. Crop J. 2023, 11, 1048–1058. [Google Scholar] [CrossRef]
- Csathó, P.; Szabó, A.; Pokovai, K.; Áre, T. Effect of potassium supply and plant density on maize (Zea mays L.) yields and nutrient contents: A case study in a Hungarian long-term field trial set up on calcareous chernozem soil. Cereal Res. Commun. 2024, 1–13. [Google Scholar] [CrossRef]
- Ali, A.; Adnan, M.; Safdar, M.E.; Asif, M.; Mahmood, A.; Nadeem, M.; Javed, N.A.; Ahmad, S.; Qamar, R.; Bilal, H.M.; et al. Role of potassium in enhancing growth, yield and quality of maize (Zea mays L.). Int. J. Biosci. 2020, 16, 210–219. [Google Scholar]
- Gaj, R.; Budka, A.; Górski, D.; Borowiak, K.; Wolna-Maruwka, A.; Bąk, K. Magnesium and calcium distribution in maize under differentiated doses of mineral fertilization with phosphorus and potassium. J. Elem. 2018, 23, 137–150. [Google Scholar] [CrossRef]
- Karna, R.R.; Luxton, T.; Bronstein, K.E.; Hoponick Redmon, J.; Scheckel, K.G. State of the science review: Potential for beneficial use of waste by-products for in situ remediation of metal-contaminated soil and sediment. Crit. Rev. Environ. Sci. Technol. 2017, 47, 65–129. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.; De la Rosa, J.M. Assessing the effects of biochar on the immobilization of trace elements and plant development in a naturally contaminated soil. Sustainability 2020, 12, 6025. [Google Scholar] [CrossRef]
- Namgay, T.; Singh, B.; Singh, B.P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Aust. J. Soil Res. 2010, 48, 638–647. [Google Scholar] [CrossRef]
- Bąk, J. Comparison of sorption capacity of biochar-based sorbents for capturing heavy-metallic ions from water media. Physicochem. Probl. Miner. Process. 2022, 58, 150265. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Cao, X.D.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef]
Biochar | pHH2O | TOC | TN | P | K | Ca | Mg | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|
% | g kg−1 | mg kg−1 | |||||||
BIO1 | 7.97 | 66.31 ± 0.9 | 43.45 ± 1.38 | 2.41 ± 0.09 | 3.87 ± 1.15 | 1.31 ± 0.63 | 6.11 ± 0.28 | 265.72 ± 29.26 | 16.60 ± 0.59 |
BIO2 | 7.54 | 74.40 ± 2.5 | 23.59 ± 0.27 | 1.70 ± 0.10 | 3.58 ± 0.20 | 6.00 ± 1.70 | 1.74 ± 0.14 | 66.53 ± 28.74 | 21.80 ± 1.17 |
Treatment | pHKCl | TOC | TN | P | K | Mg |
---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | |||||
Control | 4.68 | 10.02 a ± 0.22 | 1.10 a ± 0.02 | 30.99 a ± 0.23 | 115.47 a ± 2.19 | 24.29 a ± 1.23 |
BIO1 | 4.92 | 14.29 b ± 0.41 | 1.30 c ± 0.03 | 31.79 a ± 0.67 | 120.09 a ± 2.27 | 24.10 a ± 0.23 |
BIO2 | 4.97 | 14.19 b ± 0.44 | 1.19 b ± 0.03 | 31.49 a ± 0.47 | 119.38 a ± 1.56 | 23.78 a ± 0.73 |
Treatment | Yields | N | P | K | Mg | Ca | Zn | Cu |
---|---|---|---|---|---|---|---|---|
g d.m. microplot−1 | g kg−1 | mg kg−1 | ||||||
Control | 133.18 a ± 13.37 | 9.30 a ± 0.34 | 3.00 a ± 0.24 | 17.90 a ± 0.96 | 1.81 a ± 0.23 | 4.78 a ± 0.38 | 143.11 b ± 8.26 | 9.78 b ± 1.07 |
BIO1 | 133.53 a ± 10.08 | 9.31 a ± 0.85 | 2.81 a ± 0.25 | 16.59 a ± 1.66 | 1.81 a ± 0.21 | 4.60 a ± 0.28 | 114.81 a ± 8.56 | 7.00 a ± 0.29 |
BIO2 | 138.21 a ± 13.38 | 9.51 a ± 0.28 | 2.90 a ± 0.56 | 17.80 a ± 1.26 | 1.91 a ± 0.13 | 4.60 a ± 0.41 | 117.62 a ± 11.45 | 7.45 a ± 0.41 |
Treatment | N | P | K | Mg | Ca | Zn | Cu |
---|---|---|---|---|---|---|---|
g microplot−1 | mg microplot−1 | ||||||
Control | 1.24 a ± 0.08 | 0.40 a ± 0.07 | 2.38 a ± 0.24 | 0.24 a ± 0.03 | 0.64 a ± 0.10 | 18.99 b ± 0.83 | 1.29 b ± 0.02 |
BIO1 | 1.25 a ± 0.20 | 0.37 a ± 0.03 | 2.21 a ± 0.13 | 0.24 a ± 0.04 | 0.61 a ± 0.02 | 15.28 a ± 0.69 | 0.94 a ± 0.11 |
BIO2 | 1.32 a ± 0.17 | 0.40 a ± 0.12 | 2.46 a ± 0.26 | 0.26 a ± 0.04 | 0.64 a ± 0.12 | 16.16 a ± 0.56 | 1.03 a ± 0.16 |
Biochar | Treatment | Concentration on the Seventh Day of the Experiment | |||||||
---|---|---|---|---|---|---|---|---|---|
Concentration at the Beginning of the Experiment | Zn2+ | Cu2+ | Ca2+ | Mg2+ | K+ | Na+ | Sum of Base | ||
mM(+) kg−1 | |||||||||
BIO1 | ZnSO4·7H2O | 1529.52 (Zn2+) | 1091.06 ± 15.71 | - | 11.35 a ± 1.64 | 20.78 b ± 0.56 | 239.77 b ± 1.11 | 45.61 b ± 2.12 | 317.51 b ± 3.07 |
BIO2 | 1290.15 ± 5.77 | - | 21.92 b ± 2.76 | 16.77 a ± 0.43 | 96.76 a ± 6.04 | 32.98 a ± 1.74 | 168.43 a ± 6.80 | ||
BIO1 | CuSO4·5H2O | 1573.66 (Cu2+) | - | 1006.81 ± 58.40 | 25.63 B ± 3.42 | 28.00 B ± 1.88 | 257.03 B ± 6.10 | 57.92 A ± 7.64 | 368.58 B ± 26.79 |
BIO2 | - | 1270.13 ± 7.05 | 15.10 A ± 1.06 | 2.24 A ± 0.17 | 68.44 A ± 9.81 | 49.81 A ± 5.98 | 135.59 A ± 14.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosulski, T.; Wierzchowska, W.; Stępień, W.; Szymańska, M. Biochar Derived from Agro-Industrial Waste: Applications in Agricultural and Environmental Applications. Agronomy 2025, 15, 1087. https://doi.org/10.3390/agronomy15051087
Sosulski T, Wierzchowska W, Stępień W, Szymańska M. Biochar Derived from Agro-Industrial Waste: Applications in Agricultural and Environmental Applications. Agronomy. 2025; 15(5):1087. https://doi.org/10.3390/agronomy15051087
Chicago/Turabian StyleSosulski, Tomasz, Wiktoria Wierzchowska, Wojciech Stępień, and Magdalena Szymańska. 2025. "Biochar Derived from Agro-Industrial Waste: Applications in Agricultural and Environmental Applications" Agronomy 15, no. 5: 1087. https://doi.org/10.3390/agronomy15051087
APA StyleSosulski, T., Wierzchowska, W., Stępień, W., & Szymańska, M. (2025). Biochar Derived from Agro-Industrial Waste: Applications in Agricultural and Environmental Applications. Agronomy, 15(5), 1087. https://doi.org/10.3390/agronomy15051087