The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicon–Melatonin Nanoparticle (Si-CTS-HPC-ME NP) Synthesis
2.2. Silicon–Melatonin Nanoparticle (Si-CTS-HPC-MEl NP) Characterization
2.3. Experimental Design
2.4. Determination of Seed Germination Parameters
2.5. Malondialdehyde (MDA) Determination
2.6. Total Phenolic and Flavonoid Contents
2.7. Ion Analysis
2.8. Statistical Analysis
3. Results
3.1. Characterization of Si-CTS-HPC-ME NPs
3.2. Effect of Si-CTS-HPC-ME NPs on the Parameters of Germination
3.3. Effect of Si-CTS-HPC-ME NPs on the SFW, SDW, PL and RL Parameters
3.4. Effect of Si-CTS-HPC-ME NPs on Total Phenol and Flavonoid
3.5. Effect of Si-CTS-HPC-ME NPs on Malondialdehyde Content (MDA)
3.6. Effect of Si-CTS-HPC-ME NPs on Na+/K+/Si/Ca2+ Concentrations
3.7. Pearson’s Correlation Coefficient Combined with Heat Maps and Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ response mechanisms to salinity stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Aliyari Rad, S.; Dehghanian, Z.; Asgari Lajayer, B.; Nobaharan, K.; Astatkie, T. Mitochondrial respiration and energy production under some abiotic stresses. J. Plant Growth Regul. 2022, 41, 3285–3299. [Google Scholar] [CrossRef]
- Zia-ur-Rehman, M.; Anayatullah, S.; Irfan, E.; Hussain, S.M.; Rizwan, M.; Sohail, M.I.; Jafir, M.; Ahmad, T.; Usman, M.; Alharby, H.F. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. Chemosphere 2023, 314, 137649. [Google Scholar] [CrossRef]
- Botella, M.A.; Rosado, A.; Bressan, R.A.; Hasegawa, P.M. Plant adaptive responses to salinity stress. In Plant Abiotic Stress, 2nd ed.; Jenks, M.A., Hasegawa, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 37–70. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Soares, C.; Ribeiro, S.; Amil, B.F.; Patinha, C.; Cachada, A.; Fidalgo, F.; Pereira, R. Nano-Fe2O3 as a tool to restore plant growth in contaminated soils–Assessment of potentially toxic elements (bio) availability and redox homeostasis in Hordeum vulgare L. J. Hazard. Mater. 2022, 425, 127999. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.; Alghanem, S.M.; Al-Huqail, A.A.; Nazir, M.M.; Zulfiqar, F.; Ahmed, T.; Fidalgo, F.; Jin, X. Zinc oxide nanoparticles mitigated the arsenic induced oxidative stress through modulation of physio-biochemical aspects and nutritional ions homeostasis in rice (Oryza sativa L.). Chemosphere 2023, 338, 139566. [Google Scholar] [CrossRef]
- Alinia, M.; Kazemeini, S.A.; Dadkhodaie, A.; Sepehri, M.; Mahjenabadi, V.A.J.; Amjad, S.F.; Poczai, P.; El-Ghareeb, D.; Bassouny, M.A.; Abdelhafez, A.A. Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Sci. Rep. 2022, 12, 22105. [Google Scholar] [CrossRef]
- Alinia, M.; Kazemeini, S.A.; Meftahizadeh, H.; Mastinu, A. Alleviating salinity stress in Cyamopsis tetragonoloba L. seedlings through foliar application of silicon or melatonin in arid and semi-desert environments. S. Afr. J. Bot. 2024, 174, 347–359. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Y.; Rui, C.; Zhang, H.; Xu, N.; Dai, M.; Chen, X.; Lu, X.; Wang, D.; Wang, J.; et al. Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca2+ signal transduction. Front. Plant Sci. 2021, 12, 693690. [Google Scholar] [CrossRef]
- Younes, N.A.; El-Sherbiny, M.; Alkharpotly, A.A.; Sayed, O.A.; Dawood, A.F.; Hossain, M.A.; Abdelrhim, A.S.; Dawood, M.F. Rice-husks synthesized-silica nanoparticles modulate silicon content, ionic homeostasis, and antioxidants defense under limited irrigation regime in eggplants. Plant Stress 2024, 11, 100330. [Google Scholar] [CrossRef]
- Etesami, H.; Fatemi, H.; Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 2021, 225, 112769. [Google Scholar] [CrossRef] [PubMed]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Marian, B.; Skalicky, M. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Gohari, G.; Farhadi, H.; Panahirad, S.; Zareei, E.; Labib, P.; Jafari, H.; Mahdavinia, G.; Hassanpouraghdam, M.B.; Ioannou, A.; Kulak, M.; et al. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int. J. Biol. Macromol. 2023, 224, 893–907. [Google Scholar] [CrossRef]
- Alinia, M.; Kazemeini, S.A.; Sepehri, M.; Dadkhodaie, A. Simultaneous application of rhizobium strain and melatonin improves the photosynthetic capacity and induces antioxidant defense system in common bean (Phaseolus vulgaris L.) under salinity stress. J. Plant Growth Regul. 2022, 41, 1367–1381. [Google Scholar] [CrossRef]
- Guo, S.; Wang, X.; Li, X.; Ma, Y.; Yang, J.; Fu, B.; Li, S. Melatonin and calcium synergistically improve salt tolerance in alfalfa (Medicago sativa. L). Ind. Crops Prod. 2025, 224, 120322. [Google Scholar] [CrossRef]
- Fahad, S.; Muhammad, I.; Zhang, S.; Alwahibi, M.S.; Elshikh, M.S.; Wang, J. Impact of melatonin application on wheat agronomic traits under abiotic stress: A meta-analysis. J. Agron. Crop Sci. 2025, 211, e70016. [Google Scholar] [CrossRef]
- Santo Pereira, A.E.; Silva, P.M.; Oliveira, J.L.; Oliveira, H.C.; Fraceto, L.F. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf. B Biointerfaces 2017, 150, 141–152. [Google Scholar] [CrossRef]
- Bhatt, R.K.; Jukanti, A.K.; Roy, M.M. Cluster bean [Cyamopsis tetragonoloba (L.) Taub.], an important industrial arid legume: A review. Legume Res. 2017, 40, 207–214. [Google Scholar] [CrossRef]
- Teja, R.R.; Saidaiah, P.; Kumar, A.K.; Geetha, A.; Bhasker, K. Stability analysis of yield and yield attributing traits of promising genotypes of cluster bean [Cyamopsis tetragonoloba (L.) Taub.]. Legume Res. 2022, 45, 536–544. [Google Scholar] [CrossRef]
- Ghosh, D.; Das, T.; Paul, P.; Dua, T.K.; Roy, S. Zinc-loaded mesoporous silica nanoparticles mitigate salinity stress in wheat seedlings through silica-zinc uptake, osmotic balance, and ROS detoxification. Plant Physiol. Biochem. 2024, 211, 108693. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Hassan, M.J.; Peng, D.; Huang, T.; Peng, Y.; Li, Z. Spermidine or spermine pretreatment regulates organic metabolites and ions homeostasis in favor of white clover seed germination against salt toxicity. Plant Physiol. Biochem. 2024, 207, 108379. [Google Scholar] [CrossRef] [PubMed]
- Alsaeedi, A.H.; El-Ramady, H.; Alshaal, T.; El-Garawani, M.; Elhawat, N.; Almohsen, M. Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ. Sci. Pollut. Res. Int. 2017, 24, 21917–21928. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Hassan, M.J.; Feng, G.; Zhao, J.; Liu, W.; Peng, Y.; Li, Z. Metabolites reprogramming and Na+/K+ transportation associated with putrescine-regulated white clover seed germination and seedling tolerance to salt toxicity. Front. Plant Sci. 2022, 13, 856007. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, W.; He, J.; Zhang, L.; Wei, Y.; Yang, M. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 2020, 187, 109785. [Google Scholar] [CrossRef]
- Irik, H.A.; Bikmaz, G. Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Sci. Rep. 2024, 14, 6929. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, J.; Zhang, Y.; Xie, X.J.; Knapp, A. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res. 2007, 58, 811–815. [Google Scholar] [CrossRef]
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. New South Wales 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate quantification of total phenolic content from plant extracts obtained by conventional and ultrasound methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Sytykiewicz, H.; Durak, R.; Borowiak-Sobkowiak, B.; Chrzanowski, G. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol. Biochem. 2017, 118, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Horneck, D.A.; Hanson, D. Handbook of reference methods for plant analysis. In Determination of Potassium and Sodium by Flame Emission Spectrophotometry, 2nd ed.; Kalra, P.Y., Ed.; CRC Press: New York, NY, USA, 1998; pp. 153–157. [Google Scholar]
- Khan, I.; Raza, M.A.; Awan, S.A.; Shah, G.A.; Rizwan, M.; Ali, B.; Tariq, R.; Hassan, M.J.; Alyemeni, M.N.; Brestic, M.; et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 2020, 156, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Ben Youssef, R.; Jelali, N.; Acosta Motos, J.R.; Abdelly, C.; Albacete, A. Salicylic acid seed priming: A key frontier in conferring salt stress tolerance in barley seed germination and seedling growth. Agronomy 2025, 15, 154. [Google Scholar] [CrossRef]
- Farooq, M.A.; Islam, F.; Ayyaz, A.; Chen, W.; Noor, Y.; Hu, W.; Hannan, F.; Zhou, W. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut. 2022, 292, 118473. [Google Scholar] [CrossRef] [PubMed]
- Kiani, R.; Arzani, A.; Mirmohammady Maibody, S.A.M. Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops cylindrica and their amphidiploids. Front. Plant Sci. 2021, 12, 646221. [Google Scholar] [CrossRef]
- Moradbeygi, H.; Jamei, R.; Heidari, R.; Darvishzadeh, R. Fe2O3 nanoparticles induced biochemical responses and expression of genes involved in rosmarinic acid biosynthesis pathway in Moldavian balm under salinity stress. Physiol. Plant. 2020, 169, 555–570. [Google Scholar] [CrossRef]
- Abdoli, S.; Ghassemi-Golezani, K.; Alizadeh-Salteh, S. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environ. Sci. Pollut. Res. 2020, 27, 36939–36953. [Google Scholar] [CrossRef]
- Pérez-Labrada, F.; López-Vargas, E.R.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 2019, 8, 151. [Google Scholar] [CrossRef]
- Junedi, M.A.; Mukhopadhyay, R.; Manjari, K.S. Alleviating salinity stress in crop plants using new engineered nanoparticles (ENPs). Plant Stress 2023, 9, 100184. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Amri, S.M. Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. J. Soil Sci. Plant Nutr. 2019, 19, 887–899. [Google Scholar] [CrossRef]
Mean Square | |||
---|---|---|---|
Si-CTS-HPC-ME NPs (NPs) | Salinity Stress (S) | NPs × S | |
DF | 2 | 2 | 4 |
GP | ns | ns | ns |
GI | ** | ** | ** |
GE | ns | * | * |
VI | ** | ** | ** |
SVI | ns | ns | * |
MGT | ** | ** | * |
CVG | ** | ** | * |
PL | ** | ** | ** |
RL | ** | ** | ** |
SFW | * | ** | * |
SDW | ns | ns | * |
MDA | ** | ** | ** |
Total phenol | ** | ** | ** |
Total flavonoid | ** | ** | ** |
Na+ | ** | ** | * |
K+ | ns | * | * |
Si | ** | ** | ** |
Ca2+ | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alinia, M.; Kazemeini, S.A.; Sabbaghi, S.; Sayahi, S.; Abolghasemi, A.; Asgari Lajayer, B. The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings. Agronomy 2025, 15, 427. https://doi.org/10.3390/agronomy15020427
Alinia M, Kazemeini SA, Sabbaghi S, Sayahi S, Abolghasemi A, Asgari Lajayer B. The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings. Agronomy. 2025; 15(2):427. https://doi.org/10.3390/agronomy15020427
Chicago/Turabian StyleAlinia, Mozhgan, Seyed Abdolreza Kazemeini, Samad Sabbaghi, Shima Sayahi, Alireza Abolghasemi, and Behnam Asgari Lajayer. 2025. "The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings" Agronomy 15, no. 2: 427. https://doi.org/10.3390/agronomy15020427
APA StyleAlinia, M., Kazemeini, S. A., Sabbaghi, S., Sayahi, S., Abolghasemi, A., & Asgari Lajayer, B. (2025). The Effect of Silicon–Melatonin Nanoparticles on Improving Germination Parameters and Reducing Salinity Toxicity by Maintaining Ion Homeostasis in Cyamopsis tetragonoloba L. Seedlings. Agronomy, 15(2), 427. https://doi.org/10.3390/agronomy15020427