Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (606)

Search Parameters:
Keywords = postharvest management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1044 KB  
Review
Melatonin as a Pre- and Postharvest Tool for Enhancing Fruit Quality
by Pedro Antonio Padilla-González, Fernando Garrido-Auñón, María Emma García-Pastor, Fabián Guillén, María Serrano, Daniel Valero and Vicente Agulló
Plants 2026, 15(2), 331; https://doi.org/10.3390/plants15020331 (registering DOI) - 22 Jan 2026
Abstract
Melatonin (MEL), also known as N-acetyl-5-methoxytryptamine, has been reported in plants as a secondary messenger involved in regulating abiotic stress responses. MEL treatment, either preharvest or postharvest, regulates several physiological and biochemical processes during fruit growth and ripening in horticultural products. These [...] Read more.
Melatonin (MEL), also known as N-acetyl-5-methoxytryptamine, has been reported in plants as a secondary messenger involved in regulating abiotic stress responses. MEL treatment, either preharvest or postharvest, regulates several physiological and biochemical processes during fruit growth and ripening in horticultural products. These include reproductive development, tissue and quality maintenance, delayed senescence, and responses to abiotic stress. Due to its natural origin, low toxicity, and multifunctional regulatory capacity, MEL has recently attracted attention as a promising ‘green preservative’ for sustainable postharvest management. Additionally, MEL coordinates through cross-talk with other plant hormones, such as abscisic acid, ethylene, polyamines, jasmonic acid, γ-aminobutyric acid, salicylic acid, and nitric oxide, to regulate postharvest ripening and senescence. Furthermore, MEL enhances antioxidant systems and improves membrane integrity, thereby alleviating chilling injury and enhancing fruit firmness and colour. Notably, recent evidence highlights the innovative regulatory mechanisms of MEL involving redox homeostasis, hormone signalling reprogramming, and transcriptional modulation of stress-responsive pathways. MEL could therefore be considered an emerging, eco-friendly tool for prolonging the shelf-life of fruit and vegetables and maintaining their quality. This review summarises the mechanisms by which MEL contributes to plant stress resistance by regulating the biosynthesis and metabolism of stress tolerance and improving fruit quality. Full article
Show Figures

Figure 1

28 pages, 1660 KB  
Review
Research Progress in Chemical Control of Pine Wilt Disease
by Die Gu, Taosheng Liu, Zhenhong Chen, Yanzhi Yuan, Lu Yu, Shan Han, Yonghong Li, Xiangchen Cheng, Yu Liang, Laifa Wang and Xizhuo Wang
Forests 2026, 17(1), 137; https://doi.org/10.3390/f17010137 - 20 Jan 2026
Abstract
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is [...] Read more.
Pine wilt disease (PWD), caused by Bursaphelenchus xylophilus, is driven by a tri-component system involving the pinewood nematode, Monochamus spp. beetle vectors, and susceptible pine hosts. Chemical control remains a scenario-dependent option for emergency suppression and high-value protection, but its deployment is constrained by strong regional regulatory and practical differences. In Europe (e.g., Portugal and Spain), field chemical control is generally not practiced; post-harvest phytosanitary treatments for wood and wood packaging rely mainly on heat treatment, and among ISPMs only sulfuryl fluoride is listed for wood treatment with limited use. This review focuses on recent progress in PWD chemical control, summarizing advances in nematicide discovery and modes of action, greener formulations and delivery technologies, and evidence-based, scenario-oriented applications (standing-tree protection, vector suppression, and infested-wood/inoculum management). Recent studies highlight accelerated development of target-oriented nematicides acting on key pathways such as neural transmission and mitochondrial energy metabolism, with structure–activity relationship (SAR) efforts enabling lead optimization. Formulation innovations (water-based and low-solvent products, microemulsions and suspensions) improve stability and operational safety, while controlled-release delivery systems (e.g., micro/nanocapsules) enhance penetration and persistence. Application technologies such as trunk injection, aerial/UAV operations, and fumigation/treatment approaches further strengthen scenario compatibility and operational efficiency. Future research should prioritize robust target–mechanism evidence, resistance risk management and rotation strategies, greener formulations with smart delivery, and scenario-based exposure and compliance evaluation to support precise, green, and sustainable integrated control together with biological and other sustainable approaches. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

24 pages, 4276 KB  
Article
Nitrogen Dynamics and Environmental Sustainability in Rice–Crab Co-Culture System: Optimal Fertilization for Sustainable Productivity
by Hao Li, Shuxia Wu, Yang Xu, Weijing Li, Xiushuang Zhang, Siqi Ma, Wentao Sun, Bo Li, Bingqian Fan, Qiuliang Lei and Hongbin Liu
AgriEngineering 2026, 8(1), 34; https://doi.org/10.3390/agriengineering8010034 - 16 Jan 2026
Viewed by 127
Abstract
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm [...] Read more.
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm−2), assessing N dynamics in field water and N distribution in soil. The results showed that field water ammonium nitrogen (NH4+-N) concentrations increased nonlinearly, showing sharp increases beyond 210 kg N·hm−2. Notably, crab activity in the RC altered the N transformation and transport processes, leading to a prolonged presence of nitrate nitrogen (NO3-N) in field water for two additional days after tillering fertilization compared to RM. This indicates a critical window for potential nitrogen loss risk, rather than enhanced retention, 15 days after basal fertilizer application. Compared to RM, RC exhibited enhanced nitrogen retention capacity, with NO3-N concentrations remaining elevated for an additional two days following tillering fertilization, suggesting a potential critical period for nitrogen loss risk. Post-harvest soil analysis revealed contrasting nitrogen distribution patterns: RC showed enhanced NH4+-N accumulation in surface layers (0–2 cm) with minimal vertical NO3-N redistribution, while RM exhibited progressive NO3-N increases in subsurface layers (2–10 cm) with increasing fertilizer rates. The 210 kg N·hm−2 rate proved optimal for the RC, producing a rice yield 12.08% higher than that of RM and sustaining high crab yields, while avoiding the excessive aqueous N levels seen at higher rates. It is important to note that these findings are based on a single-site, single-growing season field experiment conducted in Panjin, Liaoning Province, and thus the general applicability of the optimal nitrogen rate may require further validation across diverse environments. We conclude that a fertilization rate of 210 kg N·hm−2 is the optimal strategy for RC, effectively balancing productivity and environmental sustainability. This finding provides a clear, quantitative guideline for precise N management in integrated aquaculture systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

22 pages, 18817 KB  
Article
Integration of X-Ray CT, Sensor Fusion, and Machine Learning for Advanced Modeling of Preharvest Apple Growth Dynamics
by Weiqun Wang, Dario Mengoli, Shangpeng Sun and Luigi Manfrini
Sensors 2026, 26(2), 623; https://doi.org/10.3390/s26020623 - 16 Jan 2026
Viewed by 159
Abstract
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in [...] Read more.
Understanding the complex interplay between environmental factors and fruit quality development requires sophisticated analytical approaches linking cellular architecture to environmental conditions. This study introduces a novel application of dual-resolution X-ray computed tomography (CT) for the non-destructive characterization of apple internal tissue architecture in relation to fruit growth, thereby advancing beyond traditional methods that are primarily focused on postharvest analysis. By extracting detailed three-dimensional structural parameters, we reveal tissue porosity and heterogeneity influenced by crop load, maturity timing and canopy position, offering insights into internal quality attributes. Employing correlation analysis, Principal Component Analysis, Canonical Correlation Analysis, and Structural Equation Modeling, we identify temperature as the primary environmental driver, particularly during early developmental stages (45 Days After Full Bloom, DAFB), and uncover nonlinear, hierarchical effects of preharvest environmental factors such as vapor pressure deficit, relative humidity, and light on quality traits. Machine learning models (Multiple Linear Regression, Random Forest, XGBoost) achieve high predictive accuracy (R2 > 0.99 for Multiple Linear Regression), with temperature as the key predictor. These baseline results represent findings from a single growing season and require validation across multiple seasons and cultivars before operational application. Temporal analysis highlights the importance of early-stage environmental conditions. Integrating structural and environmental data through innovative visualization tools, such as anatomy-based radar charts, facilitates comprehensive interpretation of complex interactions. This multidisciplinary framework enhances predictive precision and provides a baseline methodology to support precision orchard management under typical agricultural variability. Full article
(This article belongs to the Special Issue Feature Papers in Sensing and Imaging 2025&2026)
Show Figures

Figure 1

16 pages, 852 KB  
Article
Effect of Post-Harvest Management on Aspergillus flavus Growth and Aflatoxin Contamination of Stored Hazelnuts
by Alessia Casu, Giorgio Chiusa, Eugenio Zagottis, Giuseppe Genova and Paola Battilani
Toxins 2026, 18(1), 38; https://doi.org/10.3390/toxins18010038 - 11 Jan 2026
Viewed by 258
Abstract
Hazelnut (Corylus avellana L.) is a major crop in the Caucasus region, but its safety is often threatened by Aspergillus flavus colonization and aflatoxin (AF) contamination. Although AFs are strictly regulated in the EU, the influence of post-harvest practices on fungal persistence [...] Read more.
Hazelnut (Corylus avellana L.) is a major crop in the Caucasus region, but its safety is often threatened by Aspergillus flavus colonization and aflatoxin (AF) contamination. Although AFs are strictly regulated in the EU, the influence of post-harvest practices on fungal persistence and AF accumulation remains poorly defined. A three-year study was conducted to evaluate the effects of drying protocols, storage temperature, and conservation practices on fungal growth and AF occurrence in hazelnuts from three producing regions of Azerbaijan. Freshly harvested nuts were subjected to two drying regimes: good drying (sun-exposed, mixed, protected from rewetting) and bad drying (shaded, piled, rewetted). After drying, samples were stored at cold (8–10 °C) or room temperature (18–22 °C). Fungal prevalence was determined by CFU counts with morphological and qPCR identification of Aspergillus section Flavi. AFs were quantified by HPLC, and water activity (aw) was monitored during storage. Drying emerged as the decisive factor: bad drying consistently resulted in markedly higher fungal loads for A. section Flavi, with mean counts up to 1.5 × 102 CFU/g, compared with 2.1 × 101 CFU/g under good drying, representing a 7-fold increase. In contrast, storage temperature and shell condition had negligible effects when nuts were properly dried. Aflatoxins were consistently below the 5 µg/kg EU limit for AFB1 in traced and well-dried samples, whereas market samples occasionally exhibited AFB1 concentrations >450 µg/kg. These findings highlight drying efficiency as the key determinant of fungal persistence and AF risk in hazelnut post-harvest management. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 17928 KB  
Article
Vanillin Activates HuTGA1-HuNPR1/5-1 Signaling to Enhance Postharvest Pitaya Resistance to Soft Rot
by Jian Xu, Xinlin Liu, Yilin He, Jinhe Li, Muhammad Muzammal Aslam, Rui Li and Wen Li
Foods 2026, 15(1), 153; https://doi.org/10.3390/foods15010153 - 3 Jan 2026
Viewed by 306
Abstract
Fusarium oxysporum-induced soft rot severely threatens postharvest pitaya quality and storage life, and while vanillin shows promise in the disease management, its mechanisms for controlling pitaya decay remain incompletely understood. In this study, we systematically investigated the molecular mechanism by which vanillin [...] Read more.
Fusarium oxysporum-induced soft rot severely threatens postharvest pitaya quality and storage life, and while vanillin shows promise in the disease management, its mechanisms for controlling pitaya decay remain incompletely understood. In this study, we systematically investigated the molecular mechanism by which vanillin inhibits soft rot in postharvest pitaya, employing physiological and biochemical characterization, bioinformatics analysis, and molecular biology techniques. Compared with control fruit on 10 d, vanillin treatment significantly reduced disease index and lesion area by 27.12% and 67.43%, respectively. Meanwhile, vanillin treatment delayed the degradation of total soluble solids (TSSs) and titratable acidity (TA) and promoted the accumulation of total phenolics and flavonoids. Additionally, vanillin enhanced the activities of defense-related enzymes, such as catalase (CAT), superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU), chitinase (CHI), peroxidase (POD) and polyphenol oxidase (PPO), and increased antioxidant capacity, as evidenced by increased DPPH radical scavenging capacity and ascorbic acid content. This resulted in reduced oxidative damage, as indicated by decreased levels of malondialdehyde (MDA), H2O2 and O2•−. Yeast one-hybrid (Y1H), dual-luciferase reporter (DLR) and subcellular localization revealed that HuTGA1, a nuclear-localized transcriptional activator, specifically bound to the as-1 cis-acting element and activated expression of HuNPR1 and HuNPR5-1. Transient overexpression of HuTGA1 reduced reactive oxygen species (ROS) accumulation and upregulated related genes. These findings suggest that vanillin treatment might enhance pitaya resistance by activating the HuTGA1-HuNPR signaling module, providing insights into the molecular mechanisms underlying vanillin-induced resistance. Full article
Show Figures

Figure 1

18 pages, 2119 KB  
Article
Identification of Volatile Organic Compounds as Natural Antifungal Agents Against Botrytis cinerea in Grape-Based Systems
by Mitja Martelanc, Tatjana Radovanović Vukajlović, Melita Sternad Lemut, Lenart Žežlina and Lorena Butinar
Foods 2026, 15(1), 119; https://doi.org/10.3390/foods15010119 - 1 Jan 2026
Viewed by 363
Abstract
Botrytis cinerea Pers., the causal agent of grey mould, causes major economic losses in viticulture by reducing grape and wine quality and yield. Antagonistic yeasts that release bioactive volatile organic compounds (VOCs) represent a sustainable alternative to synthetic fungicides. Here, VOCs produced by [...] Read more.
Botrytis cinerea Pers., the causal agent of grey mould, causes major economic losses in viticulture by reducing grape and wine quality and yield. Antagonistic yeasts that release bioactive volatile organic compounds (VOCs) represent a sustainable alternative to synthetic fungicides. Here, VOCs produced by Pichia guilliermondii strain ZIM624 were identified and assessed for antifungal activity against B. cinerea. 65 VOCs—including higher alcohols, volatile phenols, esters, and terpenes—were detected using two newly developed and validated analytical methods combining automated headspace solid-phase microextraction with gas chromatography–mass spectrometry. A total of 13 VOCs were selected for the bioassays. Fumigation assays demonstrated that terpenes (citronellol, geraniol, nerol, α-terpineol, and linalool) were the most effective inhibitors of B. cinerea mycelial growth (EC50 = 6.3–33.9 μL/L). Strong inhibition was also observed for 4-vinylphenol and isoamyl acetate. In vivo assays confirmed that exposing infected grape berries to P. guilliermondii VOCs significantly reduced grey mould incidence. These results highlight the potential of P. guilliermondii ZIM624 volatiles as natural biofumigants for the eco-friendly management of B. cinerea in grapes. Future research should focus on optimising VOC production, evaluating efficacy under field conditions, and developing formulations for practical application in vineyards and post-harvest storage. Additionally, investigating potential synergistic effects of VOC combinations could lead to more effective biocontrol strategies. Full article
Show Figures

Figure 1

3 pages, 161 KB  
Editorial
Management of Postharvest Fungal Diseases in Fruits and Vegetables
by Luciana Cerioni and Viviana Andrea Rapisarda
J. Fungi 2026, 12(1), 29; https://doi.org/10.3390/jof12010029 - 30 Dec 2025
Viewed by 317
Abstract
Postharvest fungal diseases pose a significant challenge across the globe [...] Full article
(This article belongs to the Special Issue Management of Postharvest Fungal Diseases of Fruits and Vegetables)
26 pages, 4991 KB  
Article
GBDR-Net: A YOLOv10-Derived Lightweight Model with Multi-Scale Feature Fusion for Accurate, Real-Time Detection of Grape Berry Diseases
by Pan Li, Jitao Zhou, Huihui Sun, Penglin Li and Xi Chen
Horticulturae 2026, 12(1), 38; https://doi.org/10.3390/horticulturae12010038 - 28 Dec 2025
Viewed by 297
Abstract
Grape berries are highly susceptible to diseases during growth and harvest, which severely impacts yield and postharvest quality. While rapid and accurate disease detection is essential for real-time control and optimized management, it remains challenging due to complex symptom patterns, occlusions in dense [...] Read more.
Grape berries are highly susceptible to diseases during growth and harvest, which severely impacts yield and postharvest quality. While rapid and accurate disease detection is essential for real-time control and optimized management, it remains challenging due to complex symptom patterns, occlusions in dense clusters, and orchard environmental interference. Although deep learning presents a viable solution, robust methods specifically for detecting grape berry diseases under dense clustering conditions are still lacking. To bridge this gap, we propose GBDR-Net—a high-accuracy, lightweight, and deployable model based on YOLOv10. It incorporates four key enhancements: (1) an SDF-Fusion module replaces the original C2f module in deeper backbone layers to improve global context and subtle lesion feature extraction; (2) an additional Detect-XSmall head is integrated at the neck, with cross-concatenated outputs from SPPF and PSA modules, to enhance sensitivity to small disease spots; (3) the nearest-neighbor upsampling is substituted with a lightweight content-aware feature reassembly operator (LCFR-Op) for efficient and semantically aligned multi-scale feature enhancement; and (4) the conventional bounding box loss function is replaced with Inner-SIoU loss to accelerate convergence and improve localization accuracy. Evaluated on the Grape Berry Disease Visual Analysis (GBDVA) dataset, GBDR-Net achieves a precision of 93.4%, recall of 89.6%, mAP@0.5 of 90.2%, and mAP@0.5:0.95 of 86.4%, with a model size of only 4.83 MB, computational cost of 20.5 GFLOPs, and a real-time inference speed of 98.2 FPS. It outperforms models such as Faster R-CNN, SSD, YOLOv6s, and YOLOv8s across key metrics, effectively balancing detection accuracy with computational efficiency. This work provides a reliable technical solution for the intelligent monitoring of grape berry diseases in horticultural production. The proposed lightweight architecture and its design focus on dense, small-target detection offer a valuable framework that could inform the development of similar systems for other cluster-growing fruits and vegetables. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

22 pages, 2367 KB  
Article
Harnessing the Potential of a Secondary Metabolite-Based Formulation for the Post-Harvest Disease Management and Shelf Life Extension of Banana
by Karma Beer, T. Damodaran, M. Muthukumar, Prasenjit Debnath, Akath Singh and Maneesh Mishra
Metabolites 2026, 16(1), 22; https://doi.org/10.3390/metabo16010022 - 25 Dec 2025
Viewed by 350
Abstract
Background: Post-harvest losses in bananas, particularly due to diseases such as anthracnose and stem-end rot, significantly limit their storage life and marketability. Developing effective and non-toxic treatments to prolong the shelf life of fruits while maintaining quality is crucial inenabling long-distance transport and [...] Read more.
Background: Post-harvest losses in bananas, particularly due to diseases such as anthracnose and stem-end rot, significantly limit their storage life and marketability. Developing effective and non-toxic treatments to prolong the shelf life of fruits while maintaining quality is crucial inenabling long-distance transport and facilitating exports. Methods: The most popular and commercial banana variety, ‘Grand Naine’, was treated with a proprietary secondary metabolite-based formulation (this refers to a solution containing natural compounds produced by living organisms, which are not directly involved in growth but can influence various biological processes, such as antimicrobial activity) and stored under cold conditions at 13 °C, using vacuum packaging (a method where air is removed from the packaging to reduce spoilage and prolong freshness). Untreated fruits were considered as controls, meaning that they were not subjected to the treatment and served as a baseline for comparison. Shelf life-related parameters such as ethylene production (a plant hormone responsible for triggering fruit ripening), ACC oxidase activity (an enzyme central to ethylene synthesis), respiration rate (the rate at which fruit consumes oxygen and produces carbon dioxide), firmness, total soluble solids (TSS; measures the sugar content in fruit), acidity, and metabolic composition were assessed, including indices of susceptibility to disease. These measurements were taken at regular intervals for both treated and control fruits. Results: Secondary metabolite-treated bananas maintained quality for 45 days, staying free from anthracnose and stem-end rot. Control fruits showed over-ripening and an 11.6% percent disease index (PDI). Treated fruits had lower ethylene production (7.80 μg/kg/s vs. 10.03 μg/kg/s in controls), reduced ACC oxidase activity, and a slower respiration rate, delaying ripening. They also had greater firmness (1.45 kg/cm2), optimal TSS (13.5 °Brix), balanced acidity (0.58%), and increased flavonoid and antioxidant levels compared to controls. Conclusions: Secondary metabolite-based treatment, combined with cold storage and vacuum packaging, extended banana shelf life to 45 days, minimized disease, and preserved fruit quality. This approach substantially reduced post-harvest losses, demonstrating export potential through extended storage. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

36 pages, 2031 KB  
Review
Pre- and Postharvest Determinants, Technological Innovations and By-Product Valorization in Berry Crops: A Comprehensive and Critical Review
by Elsa M. Gonçalves, Rui Ganhão and Joaquina Pinheiro
Horticulturae 2026, 12(1), 19; https://doi.org/10.3390/horticulturae12010019 - 24 Dec 2025
Viewed by 582
Abstract
Berries—including strawberries, blueberries, raspberries, blackberries, cranberries, and several less commonly cultivated berry species—are highly valued for their sensory quality and rich content of bioactive compounds, yet they are among the most perishable horticultural products. Their soft texture, high respiration rate, and susceptibility to [...] Read more.
Berries—including strawberries, blueberries, raspberries, blackberries, cranberries, and several less commonly cultivated berry species—are highly valued for their sensory quality and rich content of bioactive compounds, yet they are among the most perishable horticultural products. Their soft texture, high respiration rate, and susceptibility to fungal pathogens lead to rapid postharvest deterioration and significant economic losses. This review synthesizes advances in berry postharvest management reported between 2010 and 2025. Conventional strategies such as rapid precooling, cold-chain optimization, controlled and modified atmospheres, and edible coatings are discussed alongside emerging non-thermal technologies, including UV-C light, ozone, cold plasma, ultrasound, biocontrol agents, and intelligent packaging systems. Particular emphasis is placed on the instability of anthocyanins and other phenolic compounds, microbial spoilage dynamics, and the influence of cultivar genetics and preharvest factors on postharvest performance. The review also highlights opportunities for circular-economy applications, as berry pomace, seeds, and skins represent valuable sources of polyphenols, dietary fiber, and seed oils for use in food, nutraceutical, cosmetic, and bio-based packaging sectors. Looking ahead, future research should prioritize integrated, multi-hurdle, low-residue postharvest strategies, the scale-up of non-thermal technologies, and data-driven cold-chain management. Overall, coordinated physiological, technological, and sustainability-oriented approaches are essential to maintain berry quality, reduce postharvest losses, and strengthen the resilience of berry value chains. Full article
(This article belongs to the Special Issue Postharvest Physiology and Quality Improvement of Fruit Crops)
Show Figures

Graphical abstract

50 pages, 1753 KB  
Review
Environmental Drivers of Fruit Quality and Shelf Life in Greenhouse Vegetables: Species-Specific Insights
by Dimitrios Fanourakis, Theodora Makraki, George P. Spyrou, Ioannis Karavidas, Georgios Tsaniklidis and Georgia Ntatsi
Agronomy 2026, 16(1), 48; https://doi.org/10.3390/agronomy16010048 - 24 Dec 2025
Viewed by 547
Abstract
This review integrates current knowledge on how greenhouse conditions regulate the nutritional quality and shelf life of tomato, cucumber, and sweet pepper. Preharvest environmental factors jointly shape fruit composition, firmness, and storage performance through their control of photosynthesis, assimilate partitioning, and structural stability. [...] Read more.
This review integrates current knowledge on how greenhouse conditions regulate the nutritional quality and shelf life of tomato, cucumber, and sweet pepper. Preharvest environmental factors jointly shape fruit composition, firmness, and storage performance through their control of photosynthesis, assimilate partitioning, and structural stability. Across all variables, light intensity and fruit temperature emerge as the dominant determinants of overall quality and shelf life potential. Relative air humidity (RH), irrigation regime, and nutrient balance primarily affect firmness, water loss, and physiological disorders, while CO2 enrichment, shading, and mineral or biostimulant inputs exert secondary yet consistent effects. Comparative evaluation shows that tomato is most sensitive to temperature and RH, cucumber to water status and epidermal stress, and sweet pepper to radiation for color and antioxidant development. These distinctions confirm that no single climatic optimization can be universally applied, and management must therefore target species-specific physiological constraints to sustain both nutritional excellence and storage performance. Major knowledge gaps remain, particularly regarding the combined effects of interacting environmental drivers and the integration of physiological responses with postharvest behavior. Future research should adopt multifactorial designs and predictive modeling to support climate-smart greenhouse strategies that optimize quality and storability under variable growing conditions. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 10940 KB  
Communication
Effectiveness of Repellent Plants for Controlling Potato Tuber Moth (Symmetrischema tangolias) in the Andean Highlands
by Alex Villanueva, Fernando Escobal, Héctor Cabrera, Héctor Cántaro-Segura, Luis Diaz-Morales and Daniel Matsusaka
Insects 2026, 17(1), 24; https://doi.org/10.3390/insects17010024 - 24 Dec 2025
Viewed by 399
Abstract
Postharvest losses from potato tuber moth severely constrain seed quality in Andean smallholder systems. This study evaluated four locally available repellent plants—Ambrosia peruviana, Eucalyptus globulus, Artemisia absinthium, and Minthostachys mollis—applied as dried leaves layered within seed bags of [...] Read more.
Postharvest losses from potato tuber moth severely constrain seed quality in Andean smallholder systems. This study evaluated four locally available repellent plants—Ambrosia peruviana, Eucalyptus globulus, Artemisia absinthium, and Minthostachys mollis—applied as dried leaves layered within seed bags of INIA 302 ‘Amarilis’ under farmer-like storage at two highland sites in Cajamarca, Peru (Huaytorco, 3350 m; Samaday, 2750 m), over 187 days. Within each site, a Completely Randomized Design with three bag-level replicates per treatment was used, and damage was assessed after 187 days as incidence of attacked tubers, internal damage severity and live larval counts. Endpoint data were analyzed separately by site using Kruskal–Wallis tests followed by Dunn’s post hoc test with Šidák correction (α = 0.05). Across both sites, all botanicals significantly reduced damage severity and live larval counts relative to the untreated control. At the warmer, lower site, A. absinthium and M. verticillata achieved large effect sizes, with severity and larval numbers reduced by roughly 80–90% compared with the control, while at the cooler, higher site, larvae were not detected in any botanical treatment. These findings indicate that simple layering of dried leaves from locally available plants, particularly wormwood and muña, can substantially mitigate S. tangolias damage in highland seed potato stores and represents a promising, low-cost complement to integrated pest management, although multi-season and dose-response studies are still needed to confirm and refine this approach. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

9 pages, 1124 KB  
Proceeding Paper
From Harvest to Market: Postharvest Technologies for Reducing Waste and Enhancing Food Security
by Ashra Khadim Hussain, Saddam Hussain, Mubashra Khadim Hussain, Madiha Javed and Rana Muhammad Aadil
Biol. Life Sci. Forum 2025, 51(1), 7; https://doi.org/10.3390/blsf2025051007 - 23 Dec 2025
Viewed by 575
Abstract
Postharvest technologies and supply chain management are critical to improving food security, reducing losses, and advancing sustainability in global agri-food systems. Nearly one-third of global food is lost after harvest, particularly in developing regions, underscoring the urgent need for efficient postharvest handling, cold [...] Read more.
Postharvest technologies and supply chain management are critical to improving food security, reducing losses, and advancing sustainability in global agri-food systems. Nearly one-third of global food is lost after harvest, particularly in developing regions, underscoring the urgent need for efficient postharvest handling, cold chain integration, and sustainable logistics systems. This paper explores key components of effective postharvest systems, including harvesting, treatments, storage, and value-added processing. It highlights digital innovations IoT sensors, blockchain, AI, and digital twins that enhance traceability, forecasting, and operational efficiency. Case studies from South Asia, Africa, Europe, and North America emphasize region-specific solutions, highlighting low-cost technologies for smallholders and advanced systems for export chains. Sustainable practices such as renewable-powered cold chains, circular economy models, and eco-friendly packaging align with Sustainable Development Goals (SDGs) on zero hunger, responsible consumption, and climate action. This paper concludes that while technology is vital, systemic transformation requires inclusive policies and collaboration among governments, private sectors, researchers, and farming communities to build resilient, equitable food systems. Full article
Show Figures

Figure 1

40 pages, 471 KB  
Review
Advances in Kiwifruit Postharvest Management: Convergence of Physiological Insights, Omics, and Nondestructive Technologies
by Shimeles Tilahun, Min Woo Baek, Jung Min Baek, Han Ryul Choi, DoSu Park and Cheon Soon Jeong
Curr. Issues Mol. Biol. 2026, 48(1), 9; https://doi.org/10.3390/cimb48010009 - 22 Dec 2025
Viewed by 305
Abstract
Kiwifruit (Actinidia spp.) is valued for its sensory quality and nutritional richness but faces postharvest challenges such as rapid softening, chilling injury, and physiological disorders. Conventional management strategies help maintain quality yet insufficient to capture the complexity of ripening, stress physiology, and [...] Read more.
Kiwifruit (Actinidia spp.) is valued for its sensory quality and nutritional richness but faces postharvest challenges such as rapid softening, chilling injury, and physiological disorders. Conventional management strategies help maintain quality yet insufficient to capture the complexity of ripening, stress physiology, and cultivar-specific variation. Recent research emphasizes the continuum from preharvest to postharvest, where orchard practices, harvest maturity, and handling conditions influence quality and storage potential. Omics-driven studies, particularly transcriptomics and metabolomics, have revealed molecular networks regulating softening, sugar–acid balance, pigmentation, antioxidant properties, and chilling tolerance. Integrated multi-omics approaches identify key biomarkers and gene–metabolite relationships linked to ripening and stress responses. Complementing omics, nondestructive estimation technologies, including hyperspectral imaging, near-infrared spectroscopy, acoustic profiling, and chemometric models are emerging as practical tools for real-time classification of maturity, quality, and storability. When calibrated with omics-derived biomarkers, these technologies provide predictive, non-invasive assessments that can be deployed across the supply chain. Together, the convergence of postharvest physiology, omics, and nondestructive sensing offers a pathway toward precision quality management and sustainable kiwifruit production. This review synthesizes recent advances across these domains, highlighting mechanistic insights, practical applications, and future directions for integrating omics-informed strategies with commercial postharvest technologies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

Back to TopTop