Estimation of Leaf Nitrogen Content in Rice Coupling Feature Fusion and Deep Learning with Multi-Sensor Images from UAV
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Data Acquisition
2.2.1. UAV Imagery Acquisition and Pre-Processing
2.2.2. Field Data Acquisition
2.3. Feature Extraction and Analysis
2.3.1. Spectral Index Feature
2.3.2. Color Space Parameter Feature
2.3.3. Texture Parameter Feature
2.4. Modeling Methods for Rice Nitrogen Estimation
2.4.1. Traditional Machine Learning Algorithms
2.4.2. Fused Deep Neural Network DNN-F2
2.5. Statistical Analysis
3. Results and Analysis
3.1. Descriptive Statistics of Rice LNC
3.2. Correlation Analysis of Feature Variables with Rice LNC
3.3. The Best Estimation Model for Rice LNC
3.4. Construction of Spatial Distribution Map of LNC
4. Discussions
4.1. Estimation of Rice LNC Based on Feature Fusion
4.2. Estimation of Rice LNC Based on Deep Learning Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, X.; Kuang, Q.; Ata-Ul-Karim, S.T.; Qiang, C. Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Front. Plant Sci. 2018, 9, 1834. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liu, Q.; Qiang, L.; Li, X. LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sens. Environ. 2008, 112, 94–106. [Google Scholar] [CrossRef]
- Guijun, Y.; Jiangang, L.; Chunjiang, Z.; Zhenhong, L.; Yanbo, H.; Haiyang, Y.; Bo, X.; Xiaodong, Y.; Dongmei, Z.; Xiaoyan, Z. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Ni, W.; Yong, L.; Tao, C.; Yongchao, T.; Qi, C.; Yan, Z. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar]
- Almeida, D.R.A.d.; Broadbent, E.N.; Ferreira, M.P.; Meli, P.; Zambrano, A.M.A.; Gorgens, E.B.; Resende, A.F.; de Almeida, C.T.; do Amaral, C.H.; Corte, A.P.D.; et al. Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sens. Environ. 2021, 264, 112582. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-Ui-Karim, S.T.; Zheng, H.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef]
- Wang, W.; Xia, Y.; Yao, X.F.; Tian, Y.C.; Liu, X.J.; Ni, J.; Cao, W.X.; Yan, Z. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Oppelt, N.; Mauser, W. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. Int. J. Remote Sens. 2004, 25, 145–159. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.; Zhang, Y.; Song, X.; Feng, W.; Kang, G.; Wang, C.; Guo, T. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 2016, 73, 170–185. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Li, Z.; Song, X.; Li, Z.; Xu, X.; Wang, P.; Zhao, C. Winter Wheat Nitrogen Status Estimation Using UAV-Based RGB Imagery and Gaussian Processes Regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Farwell, L.S.; Gudex-Cross, D.; Anise, I.E.; Bosch, M.J.; Olah, A.M.; Radeloff, V.C.; Razenkova, E.; Rogova, N.; Silveira, E.M.O.; Smith, M.M.; et al. Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sens. Environ. 2021, 253, 112175. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Blacker, C.; Gaulton, R.; Zhu, Q.; Yang, M.; Yang, G.; Zhang, J.; Yang, Y.; Yang, M.; et al. Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sens. 2023, 15, 854. [Google Scholar] [CrossRef]
- Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.-M.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.; Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.; Raines, C.; et al. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sens. Environ. 2019, 231, 111176. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar]
- Tan, M.; Li, X.; Hui, X.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Mckenzie, H.A.; Wallace, H.S.A. The Kjeldahl determination of Nitrogen: A critical study of digestion conditions-Temperature, Catalyst, and Oxidizing agent. Aust. J. Chem. 1954, 7, 55–70. [Google Scholar] [CrossRef]
- Xiao, M.; Hu, Q.; Ren, D.; Lu, A.; An, Y. Automatic selection of xrf spectral feature variables for soil heavy metal based on Fipls and Bipls. Int. J. Robot. Autom. 2022, 37, 52–59. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Ma, X. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Niu, Z.; Wang, C.; Huang, W.; Chen, H.; Gao, S.; Li, D.; Muhammad, S. Combined Use of Airborne LiDAR and Satellite GF-1 Data to Estimate Leaf Area Index, Height, and Aboveground Biomass of Maize During Peak Growing Season. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4489–4501. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Ge, X. Leaf salt ion content estimation of halophyte plants based on geographically weighted regression model combined with hyperspectral data. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2019, 35, 115–124. [Google Scholar]
- Grodowitz, M.J.; Harms, N.E.; Freedman, J.E. Use of an inexpensive chlorophyll meter to predict nitrogen levels in leaf tissues of water hyacinth (Eichhornia crassipes). J. Aquat. Plant Manag. 2016, 54, 106–108. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Bargen, K.V.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. Asae 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003. [Google Scholar]
- Shigeto, K.; Makoto, N. An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef]
- Mao, W.; Wang, Y.; Wang, Y. Real-time Detection of Between-row Weeds Using Machine Vision. In Proceedings of the 2003 ASABE Annual International Meeting, Las Vegas, NV, USA, 27–30 July 2003. [Google Scholar]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tedesco, D.; Moreira, B.R.d.A.; Barbosa Júnior, M.R.; Papa, J.P.; da Silva, R.P. Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices. Comput. Electron. Agric. 2021, 191, 106544. [Google Scholar] [CrossRef]
- Bagheri, N. Application of aerial remote sensing technology for detection of fire blight infected pear trees. Comput. Electron. Agric. 2020, 168, 105147. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Xu, B.; Feng, H.; Yang, G. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Zhou, D.; Li, M.; Li, Y.; Qi, J.; Liu, K.; Cong, X.; Tian, X. Detection of ground straw coverage under conservation tillage based on deep learning. Comput. Electron. Agric. 2020, 172, 105369. [Google Scholar] [CrossRef]
- Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 837–842. [Google Scholar] [CrossRef]
- Bengio, Y.; Grandvalet, Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Milgrom, G. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. J. Financ. Econ. 1985, 14, 71–100. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual. Prefer. 2000, 11, 5–16. [Google Scholar] [CrossRef]
- Dimitris, R.; Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2018. [Google Scholar]
- Joachims, T. Making large-Scale SVM Learning Practical. In Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Santos, E.; Gomes, H.M. A Comparative Study of Polynomial Kernel SVM Applied to Appearance-Based Object Recognition. In Proceedings of the International Workshop on Pattern Recognition with Support Vector Machines, Niagara Falls, ON, Canada, 10 August 2002. [Google Scholar]
- Mcculloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Schumacher, M.; Rossner, R.; Vach, W. Neural networks and logistic regression: Part I. Comput. Stat. Data Anal. 1996, 21, 661–682. [Google Scholar] [CrossRef]
- Williams, J.; Comanescu, R.; Radu, O.; Tian, L. DNN Multimodal Fusion Techniques for Predicting Video Sentiment. In Proceedings of the Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML), Melbourne, Australia, 20 July 2018. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop nitrogen status in vegetative stage. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Xu, X.G.; Fan, L.L.; Li, Z.H.; Meng, Y.; Feng, H.K.; Yang, H.; Xu, B. Estimating Leaf Nitrogen Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV. Remote Sens. 2021, 13, 340. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Eckert, S.; Nie, Y.; Ren, H.; Wu, J.; Li, X.; Yuan, Y. Deep learning for quantitative remote sensing of vegetation parameters: A review. Sci. China Earth Sci. 2019, 62, 1485–1502. [Google Scholar]












| Type of Features | Abbreviation | Name | Formula | Ref. |
|---|---|---|---|---|
| RGB Spectral Index Feature | WI | Woebbecke Index | (g − b)/(r − g) | [27] |
| ExG | Excess Green Vegetation Index | 2g − r − b | [27] | |
| ExGR | Excess Green Red Vegetation Index | 3g − 2.4r − b | [28] | |
| GLI | Green Leaf Index | (2g − r − b)/(2g + r + b) | [29] | |
| VARI | Visible Atmospherically Resistant Index | (g − r)/(g + r − b) | [30] | |
| MGRVI | Modified Green Red Vegetation Index | (g2 − r2)/(g2 + r2) | [31] | |
| CIVE | Color Index of Vegetation Extraction | 0.441r − 0.881g + 0.385b + 18.7874 | [32] | |
| RGBVI | Red Green Blue Vegetation Index | (g2 – b × r)/(g2 + b × r) | [31] | |
| IKAW | Kawashima Index | (r − b)/(r + b) | [33] | |
| ExB | Excess Blue Vegetation Index | 1.4b − g | [34] | |
| MS Spectral Index Feature | DVI | Difference Vegetation Index | Rnir − Rr | [35] |
| NDVI | Normalized Difference Vegetation Index | (Rnir − Rr)/(Rnir + Rr) | [36] | |
| RVI | Ratio Vegetation Index | Rnir/Rr | [37] | |
| MNLI | Modified Nonlinear Vegetation Index | (1.5Rnir2 − 1.5Rg)/(Rnir2 + Rr + 0.5) | [38] | |
| SAVI | Soil Adjusted Vegetation Index | (Rnir − Rr)/1.5(Rnir + Rr + 0.5) | [39] | |
| TCARI | Transformed Chlorophyll Absorption Ratio Index | 3[(Rre − Rr) − 0.2(Rre − Rg) × (Rre/Rr)] | [40] | |
| MCARI | Modified Chlorophyll Absorption Ratio Index | [(Rre − Rr) − 0.2(Rre − Rg)] × (Rre/Rr) | [41] | |
| RECI | Red Edge Chlorophyll Index | (Rnir/Rre) − 1 | [42] | |
| MSRI | Modified Simple Ratio Index | ) | [43] | |
| TVI | Triangular Vegetation Index | 0.5(120(Rnir − Rre) − 200(Rr − Rre)) | [44] |
| Color Space | Color Space Parameter | Definition | Formula |
|---|---|---|---|
| RGB | R | Red (range 0–255, normalized here to [0, 1]) | / |
| G | Green (range 0–255, normalized here to [0, 1]) | / | |
| B | Blue (range 0–255, normalized here to [0, 1]) | / | |
| HSV | H | Hue (range 0–360) | H = p(g − b), if Cmax = r; p(b − r) + 120, if Cmax = g; p(r − g) + 240, if Cmax = b; (Δ = Cmax − Cmin, Cmax = max(r,g,b), Cmin = min(r,g,b), p = 60/Δ) |
| S | Saturation (range 0–100) | Δ/Cmax | |
| V | Value (range 0 [black]–100 [white]) | Cmax | |
| L*a*b* | L* | Value (range 0 (black)–100 (white)) | L* = 116(Y/Y0)1/3 − 16, if Y/Y0 > 0.008856; 903.3(Y/Y0) otherwise (Y = 0.213r + 0.751g + 0.072b, Y0 = 100) |
| a* | Chroma (positive values mean red, negative values mean green) | a* = 500 × [(X/X0)1/3 − (Y/Y0)1/3] (X = 0.412r + 0.358g + 0.180, X0 = 95.047) | |
| b* | Chroma (positive values mean yellow, negative values mean blue) | b* = 200[(Y/Y0)1/3 − (Z/Z0)1/3] (Z = 0.019r + 0.119g + 0.950, Z0 = 108.883) |
| Type of Features | MS Texture Feature Parameter | ||||
|---|---|---|---|---|---|
| Abbreviation | ME | EN | DI | SE | VA |
| Name | Mean | Entropy | Dissimilarity | Second Moment | Variance |
| Formula | |||||
| Fertility Stage | Jointing | Filling | Full Fertility Stage | Booting |
|---|---|---|---|---|
| Numbers | 24 | 24 | 72 | 24 |
| Mean (%) | 4.34 | 3.13 | 3.71 | 3.67 |
| Standard Deviation | 0.21 | 0.17 | 0.53 | 0.16 |
| Range (%) | 3.95–4.65 | 2.89–3.52 | 2.89–4.65 | 3.34–3.89 |
| Coefficient of Variation (%) | 4.84 | 5.43 | 14.28 | 4.36 |
| Algorithms | Evaluation Indicator | Jointing | Booting | Filling |
|---|---|---|---|---|
| RF | R2 | 0.67 | 0.52 | 0.45 |
| RMSE | 0.12 | 0.18 | 0.13 | |
| GPR | R2 | 0.51 | 0.33 | 0.35 |
| RMSE | 0.21 | 0.19 | 0.21 | |
| PLSR | R2 | 0.50 | 0.42 | 0.41 |
| RMSE | 0.20 | 0.15 | 0.16 | |
| SVM | R2 | 0.37 | 0.27 | 0.25 |
| RMSE | 0.25 | 0.21 | 0.24 | |
| ANN | R2 | 0.64 | 0.53 | 0.56 |
| RMSE | 0.11 | 0.15 | 0.16 | |
| DNN-F2 | R2 | 0.72 | 0.66 | 0.64 |
| RMSE | 0.08 | 0.11 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Xu, X.; Xu, S.; Meng, Y.; Yang, G.; Xu, B.; Yang, X.; Song, X.; Xue, H.; Song, Y.; et al. Estimation of Leaf Nitrogen Content in Rice Coupling Feature Fusion and Deep Learning with Multi-Sensor Images from UAV. Agronomy 2025, 15, 2915. https://doi.org/10.3390/agronomy15122915
Xu X, Xu X, Xu S, Meng Y, Yang G, Xu B, Yang X, Song X, Xue H, Song Y, et al. Estimation of Leaf Nitrogen Content in Rice Coupling Feature Fusion and Deep Learning with Multi-Sensor Images from UAV. Agronomy. 2025; 15(12):2915. https://doi.org/10.3390/agronomy15122915
Chicago/Turabian StyleXu, Xinlei, Xingang Xu, Sizhe Xu, Yang Meng, Guijun Yang, Bo Xu, Xiaodong Yang, Xiaoyu Song, Hanyu Xue, Yuekun Song, and et al. 2025. "Estimation of Leaf Nitrogen Content in Rice Coupling Feature Fusion and Deep Learning with Multi-Sensor Images from UAV" Agronomy 15, no. 12: 2915. https://doi.org/10.3390/agronomy15122915
APA StyleXu, X., Xu, X., Xu, S., Meng, Y., Yang, G., Xu, B., Yang, X., Song, X., Xue, H., Song, Y., & Wang, T. (2025). Estimation of Leaf Nitrogen Content in Rice Coupling Feature Fusion and Deep Learning with Multi-Sensor Images from UAV. Agronomy, 15(12), 2915. https://doi.org/10.3390/agronomy15122915

