Abstract
Vegetative propagation through stem cuttings and in vitro microcuttings enables large-scale multiplication of superior genotypes in various crop species. This approach is widely used both to propagate and select trees with desirable genetic traits as well as to preserve a significant proportion of genetic diversity. However, successful plant regeneration using this technique requires the development of an adventitious root (AR) system at the base of cuttings or microcuttings. Reduced root formation and functionality strongly limit the application of vegetative propagation, both in vivo and in vitro. The complex process of AR development is greatly influenced by the physiological state of the donor plant, as well as by genetic and environmental factors. Among the environmental factors involved, light quality and intensity have been mainly studied empirically. This review summarizes advances in understanding how light quantity and quality influence in vitro rooting of micropropagated plants, emphasizing species-specific responses. Furthermore, medium components such as sugars and growth regulators, which interact significantly with light, are also considered. Based on existing studies across different plant species, particularly in the absence of growth regulators, the most effective spectrum for root induction is a temporary enrichment of red light, either alone or combined with small amounts of blue or green light. An efficient root growth occurs when the explants are re-exposed to white light, typically at intensities of 40–50 μmol m−2 s−1. After root development, exposing the microcuttings to higher intensities could help acclimatization. Finally, considering its capacity to precisely regulate light quality and intensity, LED technology offers a valuable tool for optimizing the rooting process and reducing production costs.