Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ET | Evapotranspiration |
PET | Potential evapotranspiration |
ET0 | Reference evapotranspiration |
ETc | Crop evapotranspiration |
Irr. Req. | Irrigation requirements |
S.O.D.R. | Southwest Oltenia Development Region |
M. S. | Meteorological station |
CWR | Crop water requirement |
Kc | Crop coefficients |
NIWR | Net irrigation water requirement |
Eff. Rain | Effective rain |
Ks | Water stress |
RAM | Readily available moisture |
TAM | Total available moisture |
Gr. Irr. | Gross irrigation |
Depl. | Depletion |
Appendix A
Input Data | Output Data |
---|---|
Climatic data:
|
|
Crop characteristics:
|
|
Soil features:
|
|
References
- World Meteorological Organization. WMO Global Annual to Decadal Climate Update; WMO: Geneva, IL, USA, 2022; p. 24. [Google Scholar]
- Sandu, I.; Mateescu, E.; Vătămanu, V.V. Schimbări Climatice în România și Efectele Asupra Agriculturii; Editura Sitech: Craiova, Romania, 2010. [Google Scholar]
- Oprea Constantin, D.M.; Grigore, E.; Bogan, E.; Antonescu, M.A. Aspects regarding requirements of the rapeseed culture towards the climatic conditions. Case study: The Ialomița County. Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2018, 16, 103–109. [Google Scholar]
- Anderson, R.; Bayer, P.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, F.; Bannayan, M.; Asadi, G.A. Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data. Int. J. Biometeorol. 2020, 64, 1519–1537. [Google Scholar] [CrossRef]
- Berca, M.; Robescu, V.-O.; Horoias, R. Winter wheat crop water consumption and its effect on yields in southern Romania, in the very dry 2019–2020 agricultural year. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 13. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture. In Making Agrifood Systems More Resilient to Shocks and Stresses; FAO: Rome, Italy, 2021; p. 182. [Google Scholar]
- Oprea Constantin, D.M.; Bogan, E.; Grigore, E.; Antonescu, A.M. Considerations on the climate characterization of the agricultural year 2011–2012 for the maize crop in the Central Bărăgan Plain. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2017, 17, 51–55. [Google Scholar]
- Zelenáková, M.; Purcz, P.; Blist’an, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef]
- Povară, R. Riscul Meteorologic în Agricultură. Grâul de Toamnă; Editura Economică: București, Romania, 2000. [Google Scholar]
- Yildirim, T.; Zhou, Y.T.; Flynn, K.C.; Gowda, P.H.; Ma, S.F.; Moriasi, D.N. Evaluating the sensitivity of vegetation and water indices to monitor drought for three Mediterranean crops. Agronomy 2021, 113, 123–134. [Google Scholar] [CrossRef]
- Ruan, H.W.; Yu, J.J.; Wang, P.; Wang, T.Y. Increased crop water requirements have exacerbated water stress in the arid transboundary rivers of Central Asia. Sci. Total Environ. 2020, 713, 136585. [Google Scholar] [CrossRef]
- Sainju, U.M. The impact of no-till crop rotation on dryland soil properties and crop yields. Agronomy 2022, 114, 2796–2810. [Google Scholar] [CrossRef]
- Farhad, M.; Kumar, U.; Tomar, V.; Bhati, P.K.; Krishnan, J.N.; Barek, V.; Brestic, M.; Hossain, A. Heat stress in wheat: A global challenge to feed billions in the current era of the changing climate. Front. Sustain. Food Syst. 2023, 7, 1203721. [Google Scholar] [CrossRef]
- World Meteorological Organization & United Nations Educational, Scientific and Cultural Organization. The International Glossary of Hydrology; WMO: Geneva, IL, USA, 2012; pp. 114–116. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage: Rome, Italy, 1998; p. 301. [Google Scholar]
- Croitoru, A.E.; Piticar, A.; Dragota, C.S.; Burda, D.C. Recent changes in reference evapotranspiration in Romania. Glob. Planet. Chang. 2013, 111, 127–132. [Google Scholar] [CrossRef]
- Chen, S.B.; Liu, Y.F.; Thomas, A. Climate change on the Tibetan Plateau: Potential evapotranspiration trends from 1961–2000. Clim. Chang. 2006, 76, 291–319. [Google Scholar]
- Xu, C.; Singh, V.; Chen, Y.D.; Chen, D. Evaporation and evapotranspiration. In Chapter 6—Book Hydrology and Hydraulics; Water Resources Publications: Littleton, CO, USA, 2008; pp. 229–277. [Google Scholar]
- Pereira, A.B.; Villa Nova, N.A.; Pires, L.F.; Angelocci, L.R.; Beruski, G.C. Estimation method of grass net radiation on the determination of potential evapotranspiration. Meteorol. Appl. 2014, 21, 369–375. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Chen, D.; Yang, K.; Wang, A. Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J. Geophys. Res. Atmos. 2014, 119, 13079–13095. [Google Scholar] [CrossRef]
- Kousari, M.R.; Ahani, H. An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. Int. J. Clim. 2012, 32, 2387–2402. [Google Scholar] [CrossRef]
- Christov, I.D.; Chilikova-Lubomirova, M. Climatic Changes and Soil Properties Concerning Water Status of Agroecosystem. J. Balk. Ecol. 2022, 25, 229–236. [Google Scholar]
- Thornthwaite, C.W.; Holzman, B. The Determination of Evaporation from Land and Water Surfaces; Soil Conservation Service: Washington, DC, USA, 1939; pp. 4–11.
- Kirkham, M.B. Potential Evapotranspiration. In Principles of Soil and Plant Water Relations, 2nd ed.; Kirkham, M.B., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 501–514. [Google Scholar]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Penman, H.L. Evaporation over Parts of Europe. Proc. Gen. Assem. Rome 1954, 38, 168–176. [Google Scholar]
- Xu, C.-Y.; Singh, V.P. Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Al Domany, M.; Touchart, L.; Bartout, P.; Nedjai, R. The evaporation from ponds in the French Midwest. Lakes Reserv. Ponds 2013, 7, 75–88. [Google Scholar]
- Al Domany, M.; Touchart, L.; Bartout, P.; Choffel, Q. Direct measurements and a new mathematical method of estimate the pond evaporation of the French Midwest. Appl. Sci. Innov. Res. 2018, 2, 1–22. [Google Scholar] [CrossRef]
- Cleugh, H.; Leuning, R.; Mu, Q.; Running, S. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Mu, Q.F.A.; Heinsch, M.; Zhao, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Ruhoff, A.; Rolim da Paz, A.; Aragao, L.; Mu, Q.; Collischom, W.; Rocha, H.R.; Running, S.W. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrol. Sci. J. 2013, 58, 1658–1676. [Google Scholar] [CrossRef]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef]
- Stancălie, G.; Marica, A.; Toulios, L. Using earth observation data and CROPWAT model to estimate the actual crop evapotranspiration. Phys. Chem. Earth 2010, 35, 25–30. [Google Scholar] [CrossRef]
- Păltineanu, C.; Chitu, E.; Mateescu, E. New trends for reference evapotranspiration and climatic water deficit. Int. Agrophys. 2012, 26, 159–165. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Holobâcă, I.H.; Lazăr, C.; Moldovan, F.; Imbroane, A. Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Chang. 2011, 111, 393–410. [Google Scholar] [CrossRef]
- Stan, F.; Neculau, G.; Zaharia, L.; Toroimac, I. Variabilité de l’évapotranspiration pour différentes types de végétation aux stations évaporimétriques expérimentales de Roumanie. XXVII Colloq. L’association Int. Climatol. 2014, 92, 1–6. [Google Scholar]
- Stan, F.; Zaharia, L.; Neculau, G.; Ioana-Toroimac, G. Variabilité spatiale et temporelle de l’évaporation dans la Plaine roumaine. Actes Colloq. L’association Int. Climatol. 2015, 28, 621–626. [Google Scholar]
- Stan, F.; Neculau, G.; Zaharia, L.; Ioana Toroimac, G.; Mihalache, S. Study on the evaporation and evapotranspiration measured on Căldăruşani lake. Procedia Environ. Sci. 2016, 32, 281–289. [Google Scholar] [CrossRef]
- Neculau, G.; Stan, F. Evaporation and evapotranspiration in Romania. Forum Geogr. 2016, 15, 39–48. [Google Scholar] [CrossRef]
- Oprea Constantin, D.M.; Mincu, F.I.S.; Tiscovschi, A.A.; Grigore, E.; Vatamanu, V.V.; Ilea, R.G. Determination of water consumption for winter wheat in southern Romania. Case study: Caracal plain, agricultural year 2017–2018. 35ème Colloq. Annu. L’association Int. Climatol. 2022, 5, 1–5. [Google Scholar]
- Smith, M. CROPWAT: A computer program for irrigation planning and management. In FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1992; Volume 46, pp. 1–65. [Google Scholar]
- Nazeer, M. Simulation of maize crop under irrigated and rainfed conditions with Cropwat model. Asian Res. Publ. Netw. J. Agric. Biol. Sci. 2009, 4, 68–73. [Google Scholar]
- Saravanan, K.; Saravanan, R. Determination of Water Requirements of Main crops in the Tank Irrigation Command area using Cropwat 8.0. Int. J. Interdiscip. Multidiscip. Stud. 2014, 1, 266–272. [Google Scholar]
- Laouisset, M.B.; Dellal, A. Estimation of Barley (Hordeum vulgare L.) Crop Water Requirements Using Cropwat Software in Ksar-Chellala Region, Algeria. Agris On-Line Pap. Econ. Inform. 2016, 7, 91–102. [Google Scholar] [CrossRef]
- Siphiwe, N.G.; Magyar, T.; Tamás, J.; Nagy, A. Modelling Soil Moisture Content with Hydrus 2D in a Continental Climate for Effective Maize Irrigation Planning. Agriculture 2024, 14, 1340. [Google Scholar] [CrossRef]
- Bouraima, A.-K.; Zhang, W.H.; Wei, C.F. Irrigation water requirements of rice using Cropwat model in Northern Benin. Int. J. Agric. Biol. Eng. 2015, 8, 58–64. [Google Scholar]
- Tsakmakis, I.; Zoidoiu, M.; Gikas, G.D.; Sylaios, G. Impact of Irrigation Technologies and Strategies on Cotton Water Footprint Using AquaCrop and CROPWAT Models. Environ. Process. 2018, 5, 181–199. [Google Scholar] [CrossRef]
- Vozhehova, R.; Lavrynenko, Y.; Kokovikhin, S.; Lykhovyd, P.; Biliaieva, I.; Drobitko, A.; Nesterchuk, V. Assessment of the CROPWAT 8.0 software reliability for evapotranspiration and crop water requirements calculations. J. Water Land Dev. 2018, 39, 147–152. [Google Scholar] [CrossRef]
- Makar, R.S.; Shahin, S.A.; El-Nazer, M.; Wheida, A.; Abd El-Hady, M. Evaluating the Impacts of Climate Change on Irrigation Water Requirements. Sustainability 2022, 14, 14833. [Google Scholar] [CrossRef]
- Soomro, S.; Solangi, G.S.; Siyal, A.A.; Golo, A.; Bhatti, N.B.; Soomro, A.G.; Memon, A.H.; Panhwar, S.; Keerio, H.A. Estimation of irrigation water requirement and irrigation scheduling for major crops using the CROPWAT model and climatic data. Water Pract. Technol. 2023, 18, 685–700. [Google Scholar] [CrossRef]
- Acharjee, T.K.; Ludwig, F.; van Halsema, G.; Hellegers, P. Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh. Agric. Water Manag. 2017, 194, 172–183. [Google Scholar] [CrossRef]
- Diku, A.; Hyseni, B.; Seci, A. Use of Cropwat 8.0 Program for the Assessment of Water Demand of some Agricultural Crops in Albania. Int. J. Sci. 2015, 4, 1–7. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M.; Abbas, A. Implications of climate change on crop water requirements in arid region: An example of Al-Jouf, Saudi Arabia. J. King Saud Univ. Eng. Sci. 2016, 28, 21–31. [Google Scholar] [CrossRef]
- Kruzslicika, M. Piața cerealelor din România. In Agricultura—Concepte și Instrumente Operaționale; Stoian, M., Aniței, M., Eds.; Editura Club România: Bucuresti, Romania, 2019; pp. 321–329. [Google Scholar]
- Mateescu, E. Impactul Condițiilor de Secetă din Câmpia Caracalului Asupra Culturilor de Grâu și Porumb; Editura Sitech: Craiova, Romania, 2004. [Google Scholar]
- Eurostat, the Statistical Office of the European Union. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 24 July 2024).
- Stan, F.; Carmello, V.; Zaharia, L.; Neculau, G.; Ioana-Toroimac, G. Estimation de l’évapotranspiration pour différents types de cultures agricoles, par le modèle cropwat. études de cas en Roumanie et au Brésil. In Proceedings of the XXXème Colloque de l’Association Internationale de Climatologie, Sfax, Tunisia, 3–6 July 2017; pp. 485–490. [Google Scholar]
- Oprea Constantin, D.M.; Marinică, A.F.; Marinică, I.; Vătămanu, V.V. Record thermiques et pluviométriques dans le sud-ouest de la Roumanie pendant les deux dernières décennies. In Proceedings of the Actes du 30ème Colloque de l’Association Internationale de Climatologie, Sfax, Tunisia, 3–6 July 2017; pp. 339–344. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage: Rome, Italy, 1979; Volume 33, p. 193. [Google Scholar]
- Smith, M.; Kivumbi, D. Calculation Procedure Use of the FAO CROPWAT Model in Deficit Irrigation Studies; Heng, L.K., Ed.; FAO (Food and Agriculture Organization): Rome, Italy; Joint FAO/IAEA Division, International Atomic Energy Agency: Vienna, Austria, 2006; pp. 17–27. [Google Scholar]
- Steduto, P.; Hsiao, T.; Fereres, E.; Raes, D. Crop Yield Response to Water; FAO Irrigation and Drainage: Rome, Italy, 2012; p. 505. [Google Scholar]
- Shah, P.V.; Mistry, R.N.; Amin, J.B.; Parmar, A.M.; Shaikh, M.R.A. Irrigation Scheduling using Cropwat. Int. J. Adv. Res. Eng. Sci. Technol. 2015, 2, 192–201. [Google Scholar]
- Surendran, U.; Sushanth, C.M.; Mammen, G.; Joseph, E.J. Modelling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India. Aquat. Procedia 2015, 4, 1211–1219. [Google Scholar] [CrossRef]
- Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756. [Google Scholar] [CrossRef]
- Dires, T.; Mekete, D. Enhancing water productivity of different field crops using deficit irrigation in the Koga Irrigation project, Blue Nile Basin, Ethiopia. Cogent Food Agric. 2020, 6, 1757226. [Google Scholar]
- Selmy, S.A.H.; Jimenez-Ballesta, R.; Kucher, D.E.; Sayed, A.S.A.; García-Navarro, F.J.; Yang, Y.; Yousif, I.A.H. Land Suitability Assessment and Crop Water Requirements for Twenty Selected Crops in an Arid Land Environment. Agronomy 2024, 14, 2601. [Google Scholar] [CrossRef]
- Knezevic, M.; Perovic, N.; Zivotic, L.; Ivanov, M.; Topalovic, A. Simulation of winter wheat water balance with Cropwat and Isareg Models. Agric. For. 2013, 59, 41–53. [Google Scholar]
- Al-Najar, H. The Integration of FAO-CropWat Model and GIS Techniques for Estimating Irrigation Water Requirement and Its Application in the Gaza Strip. Nat. Resour. 2011, 2, 146–154. [Google Scholar] [CrossRef]
- Gilanipour, J.; Gholizadeh, B. Prediction of Rice Water Requirement Using FAO-CROPWAT Model in North Iran under Future Climate Change. Preprints 2016, 1–9. [Google Scholar]
- Rohila, J.S.; Gealy, D.R.; Jackson, A.K.; Ziska, L.H. Assessment of outcrossing potential between cultivated and weedy rice under alternate wetting and drying irrigation management. Agronomy 2024, 116, 1903–1916. [Google Scholar] [CrossRef]
- Nistor, M.M. Seasonal and annual crop evapotranspiration in Europe over 2011–2070. Appl. Ecol. Environ. Res. 2018, 16, 2149–2168. [Google Scholar] [CrossRef]
- Liu, H.; Ren, Y.; Zhou, X.; Liu, R. Mitigating Dry–Hot–Windy Climate Disasters in Wheat Fields, Using the Sprinkler Irrigation Method. Agronomy 2024, 14, 1962. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.; Kim, J.; Yang, M.; Kim, S.; Kim, B.; Ryu, E.; Hwang, Y.-H.; Kim, Y.-G.; Kim, D.W.; et al. Evaluation of the Effects of Recent Weather Variations on Winter-Wheat Agronomic Characteristics and Their Correlations in Jinju, Republic of Korea. Agronomy 2024, 14, 2017. [Google Scholar] [CrossRef]
- Mincu, F.I.; Neculau, G. An Experimental Study on Crop Evapotranspiration in Romania. Sci. Pap. Ser. A Agron. 2024, 67, 554–561. [Google Scholar]
- Harrison, P.A.; Butterfield, R.E. Effects of climate change on Europe-wide winter wheat and sunflower productivity. Clim. Res. 1996, 7, 225–241. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Importance of variety choice: Adapting to climate change in organic and conventional farming systems in Germany. Outlook Agric. 2017, 46, 178–184. [Google Scholar] [CrossRef]
- Lazăr, C.; Lazăr, D.A. Simulation of Temperature Increase Influence on Winter Wheat Yields and Development in South—Eastern Romania. Rom. Agric. Res. 2010, 27, 7–15. [Google Scholar]
- Peptenatu, D.; Sîrodoev, I.; Pravalie, R. Quantification of the aridity process in South-Western Romania. J. Environ. Health Sci. Eng. 2013, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Prăvălie, R.; Peptenatu, D.; Sirodoev, I. The impact of climate change on the dynamics of agricultural systems in south-western Romania. C. J. Earth Environ. Sci. 2013, 8, 175–186. [Google Scholar]
Nr. | Meteorological Station (M. S.) | Altitude (m) | Latitude (°′N) | Longitude (°′E) | 2016 | 2017 | 2018 | |||
---|---|---|---|---|---|---|---|---|---|---|
Taer | P | Taer | P | Taer | P | |||||
1. | Băilești | 57.00 | 44°01′ | 23°21′ | 12.2 | 627.5 | 12.0 | 495.4 | 12.4 | 630.2 |
2. | Bechet | 36.0 | 43°47′ | 23°57′ | 12.1 | 662.1 | 12.1 | 602.0 | 12.2 | 651.4 |
3. | Caracal | 106.0 | 44°06′ | 24°22′ | 12.3 | 560.8 | 12.3 | 538.4 | 12.5 | 598.1 |
4. | Drăgășani | 280.0 | 44°40′ | 24°17′ | 12.1 | 683.7 | 12.3 | 663.2 | 12.3 | 891.8 |
5. | Slatina | 172.0 | 44°26′ | 24°21’ | 12.0 | 633.5 | 12.0 | 634.5 | 12.0 | 789.9 |
No | Meteorological Station | Planting Date | Harvesting Date |
---|---|---|---|
1 | Caracal | 06.X.2016 05.X.2017 | 01.VII.2017 01.VII.2018 |
2 | Băilești | 04.X.2016 06.X.2017 | 28.VI.2017 06.VII.2018 |
3 | Bechet | 03.X.2016 02.X.2017 | 30.VI.2017 11.VII.2018 |
4 | Slatina | 02.X.2016 06.X.2017 | 29.VI.2017 08.VII.2018 |
5 | Drăgășani | 01.X.2016 03.X.2017 | 03.VII.2017 06.VII.2018 |
No | Meteorological Station | Soil Texture | Total Available Soil Moisture (mm/m) | Rooting Depth (cm) | Initial Available Soil Moisture (mm/m) |
---|---|---|---|---|---|
1 | Caracal | Sandy loam | 240.0 | 40 | 168.0 |
2 | Băileşti | Sandy loam | |||
3 | Bechet | Sandy loam | |||
4 | Slatina | Clay | |||
5 | Drăgășani | Clay loam |
M. S. | Year | ETc (mm) | Eff. Rain (mm) | Irr. Req. (mm) |
---|---|---|---|---|
Caracal | 2016–2017 | 400.6 | 494.1 | 196.7 |
2017–2018 | 398.8 | 496.9 | 206.6 | |
Băilești | 2016–2017 | 378.0 | 309.0 | 225.0 |
2017–2018 | 424.3 | 492.7 | 210.6 | |
Bechet | 2016–2017 | 389.5 | 532.9 | 141.3 |
2017–2018 | 444.6 | 581.7 | 171.1 | |
Slatina | 2016–2017 | 370.5 | 315.2 | 173.3 |
2017–2018 | 409.9 | 606.9 | 163.8 | |
Drăgășani | 2016–2017 | 385.3 | 355.8 | 160.1 |
2017–2018 | 410.8 | 610.6 | 131.0 |
No. | M. S. | Time | Type of Irrigation | Actual Water Uses by Crop (mm) | Potential Water Uses by Crop (mm) | Efficiency Irrigation Schedule (%) | Deficiency Irrigation Schedule (%) | Moist Deficit at Harvest (mm) | Actual Irrigation Requirement (mm) | Efficiency Rain (%) | Yield Reduction % |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Caracal | 2016–2017 | Scenario 1 | 278.0 | 399.4 | - | 30.4 | 27.5 | 120.1 | 49 | 30.4 |
Scenario 2 | 399.4 | 399.4 | 100 | 0 | 8.4 | 143.6 | 45 | 0 | |||
2017–2018 | Scenario 1 | 263.5 | 397.8 | - | 33.8 | 19.2 | 124.7 | 48 | 33.8 | ||
Scenario 2 | 397.8 | 397.8 | 100 | 0 | 5.6 | 141 | 45 | 0 | |||
2 | Băileşti | 2016–2017 | Scenario 1 | 250.5 | 376.2 | - | 33.4 | 90.6 | 187.5 | 56 | 33.4 |
Scenario 2 | 376.2 | 376.2 | 100 | 0 | 55 | 191.1 | 55 | 0 | |||
2017–2018 | Scenario 1 | 285.8 | 432.0 | - | 32.4 | 52.6 | 161.1 | 47 | 32.4 | ||
Scenario 2 | 432.0 | 432.0 | 100 | 0 | 3.9 | 189.6 | 42 | 0 | |||
3 | Bechet | 2016–2017 | Scenario 1 | 318.3 | 387.5 | - | 17.9 | 12.6 | 53.0 | 54 | 17.9 |
Scenario 2 | 387.5 | 387.5 | 100 | 0 | 5.9 | 86.6 | 48 | 0 | |||
2017–2018 | Scenario 1 | 347.4 | 443.4 | - | 21.7 | 6.6 | 73.8 | 55 | 21.7 | ||
Scenario 2 | 443.3 | 443.3 | 100 | 0 | 6.6 | 138.6 | 45 | 0 | |||
4 | Slatina | 2016–2017 | Scenario 1 | 234.6 | 368.7 | - | 36.4 | 81.8 | 129.6 | 70 | 36.4 |
Scenario 2 | 368.7 | 368.7 | 100 | 0 | 55 | 134.9 | 68 | 0 | |||
2017–2018 | Scenario 1 | 231.9 | 408.6 | - | 43.3 | 76.5 | −41.2 | 60 | 43.3 | ||
Scenario 2 | 408.6 | 408.6 | 100 | 0 | 36.3 | −26.6 | 58 | 0 | |||
5 | Drăgășani | 2016–2017 | Scenario 1 | 267.9 | 383.9 | - | 30.2 | 75.9 | 81.2 | 73 | 30.2 |
Scenario 2 | 383.9 | 383.9 | 100 | 0 | 43.9 | 99.7 | 69 | 0 | |||
2017–2018 | Scenario 1 | 285.0 | 409.5 | 0 | 30.4 | 63.5 | −41.1 | 60 | 30.4 | ||
Scenario 2 | 409.5 | 409.5 | 100 | 0 | 31.9 | −8 | 55 | 0 |
No. | Station | Period | Date | Day | Stage | Ks (Fract.) | Depl (%) | Net Irr. (mm) | Gr. Irr. (mm) | Flow (L/s/ha) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Caracal | 2016–2017 | 18-Apr | 195 | Dev | 1 | 55 | 52.6 | 75.2 | 0.04 |
06-May | 213 | Mid | 1 | 58 | 55.8 | 79.8 | 0.51 | |||
22-May | 229 | Mid | 1 | 58 | 55.4 | 79.2 | 0.57 | |||
01-Jul | End | End | 1 | 9 | ||||||
2017–2018 | 19-Apr | 197 | Dev | 1 | 57 | 54.8 | 78.2 | 0.05 | ||
04-May | 212 | Mid | 1 | 58 | 55.4 | 79.1 | 0.61 | |||
20-May | 228 | Mid | 1 | 57 | 54.4 | 77.7 | 0.56 | |||
01-Jul | End | End | 1 | 6 | ||||||
2 | Băileşti | 2016–2017 | 25-Apr | 204 | Mid | 1 | 57 | 54.8 | 78.2 | 0.04 |
18-May | 227 | Mid | 1 | 56 | 53.8 | 76.9 | 0.39 | |||
04-Jun | 244 | End | 1 | 59 | 56.3 | 80.5 | 0.55 | |||
28-Jun | End | End | 1 | 57 | ||||||
2017–2018 | 18-Apr | 195 | Dev | 1 | 58 | 54 | 77.2 | 0.05 | ||
02-May | 209 | Mid | 1 | 55 | 52.9 | 75.5 | 0.62 | |||
25-May | 232 | Mid | 1 | 55 | 53.1 | 75.9 | 0.38 | |||
11-Jun | 249 | End | 1 | 57 | 54.5 | 77.9 | 0.53 | |||
06-Jul | End | End | 1 | 4 | ||||||
3 | Bechet | 2016–2017 | 21-Apr | 201 | Mid | 1 | 58 | 55.7 | 79.6 | 0.05 |
15-May | 225 | Mid | 1 | 56 | 53.8 | 76.9 | 0.37 | |||
30-Jun | End | End | 1 | 6 | ||||||
2017–2018 | 22-Apr | 203 | Dev | 1 | 58 | 54.2 | 77.5 | 0.04 | ||
09-May | 220 | Mid | 1 | 55 | 52.9 | 75.6 | 0.51 | |||
01-Jun | 243 | Mid | 1 | 56 | 53.7 | 76.7 | 0.39 | |||
11-Jul | End | End | 1 | 7 | ||||||
4 | Slatina | 2016–2017 | 19-Apr | 200 | Mid | 1 | 55 | 53.1 | 75.9 | 0.04 |
11-May | 222 | Mid | 1 | 56 | 54 | 77.2 | 0.41 | |||
30-May | 241 | End | 1 | 58 | 55.3 | 78.9 | 0.48 | |||
29-Jun | End | End | 1 | 57 | ||||||
2017–2018 | 21-Apr | 198 | Dev | 1 | 59 | 55.9 | 79.8 | 0.05 | ||
09-May | 216 | Mid | 1 | 58 | 55.6 | 79.4 | 0.51 | |||
26-May | 233 | Mid | 1 | 57 | 54.6 | 78 | 0.53 | |||
09-Jun | 247 | End | 1 | 58 | 55.6 | 79.4 | 0.66 | |||
08-Jul | End | End | 1 | 38 | ||||||
5 | Drăgășani | 2016–2017 | 11-Apr | 193 | Dev | 1 | 56 | 51.9 | 74.1 | 0.04 |
20-May | 232 | Mid | 1 | 55 | 53 | 75.8 | 0.22 | |||
09-Jun | 252 | End | 1 | 59 | 56.9 | 81.3 | 0.47 | |||
03-Jul | End | End | 1 | 46 | ||||||
2017–2018 | 20-Apr | 200 | Dev | 1 | 57 | 53.4 | 76.3 | 0.04 | ||
10-May | 220 | Mid | 1 | 56 | 53.8 | 76.9 | 0.45 | |||
01-Jun | 242 | Mid | 1 | 59 | 56.8 | 81.1 | 0.43 | |||
06-Jul | End | End | 1 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, D.M.; Mincu, F.I.; Diaconu, D.C.; Burada, C.D.; Băltățeanu, E. Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model. Agronomy 2025, 15, 61. https://doi.org/10.3390/agronomy15010061
Constantin DM, Mincu FI, Diaconu DC, Burada CD, Băltățeanu E. Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model. Agronomy. 2025; 15(1):61. https://doi.org/10.3390/agronomy15010061
Chicago/Turabian StyleConstantin, Dana Maria (Oprea), Florentina Iuliana Mincu, Daniel Constantin Diaconu, Cristina Doina Burada, and Elena Băltățeanu. 2025. "Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model" Agronomy 15, no. 1: 61. https://doi.org/10.3390/agronomy15010061
APA StyleConstantin, D. M., Mincu, F. I., Diaconu, D. C., Burada, C. D., & Băltățeanu, E. (2025). Water Management in Wheat Farming in Romania: Simulating the Irrigation Requirements with the CROPWAT Model. Agronomy, 15(1), 61. https://doi.org/10.3390/agronomy15010061