The Function of Macronutrients in Helping Soybeans to Overcome the Negative Effects of Drought Stress
Abstract
:1. Introduction
2. Soybean Water Requirements and Response to Drought
3. Impact of Nutrient Management on Soybean Responses to Water Deficit
3.1. Primary Macronutrients
3.1.1. Nitrogen
3.1.2. Potassium
3.1.3. Phosphorus
3.2. Secondary Macronutrients
3.2.1. Calcium
3.2.2. Magnesium
3.2.3. Sulfur
3.3. Synergistic or Antagonistic Effects of Macronutrients on Soybean
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellaloui, N.; Bruns, H.A.; Abbas, H.K.; Mengistu, A.; Fisher, D.K.; Reddy, K.N. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA. Front. Plant Sci. 2015, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Śliwa, J.; Zając, T.; Oleksy, A.; Klimek-Kopyra, A.; Lorenc-Kozik, A.; Kulig, B. Comparison of the development and productivity of soybean (Glycine max (L.) Merr.) cultivated in western Poland. Acta Sci. Pol. Sec. Agric. 2015, 14, 81–95. [Google Scholar]
- SoyStats 2024. Available online: http://www.soystats.com (accessed on 15 May 2024).
- Singh, G.; Shivakumar, B.G. The Role of Soybean in Agriculture. In The Soybean: Botany, Production and Uses; Singh, B., Ed.; CAB International: Oxfordshire, UK, 2010; pp. 24–47. [Google Scholar]
- Ghani, M.; Kulkarni, K.P.; Song, J.T.; Shannon, J.G.; Lee, L.J. Soybean sprouts: A review of nutrient composition, health benefits and genetic variation. Plant Breed. Biotech. 2016, 4, 398–412. [Google Scholar] [CrossRef]
- Martyniuk, S. Scientific and practical aspects of legume symbiosis with nodule bacteria. Pol. J. Agr. 2012, 9, 17–21. [Google Scholar]
- Kotecki, A.; Lewandowska, S. (Eds.) Studia Nad Uprawą Soi Zwyczajnej (Glycine max (L.) Merrill) w Południowo-Zachodniej Polsce; Uniwersytet Przyrodniczy: Wrocław, Poland, 2020; p. 226. (In Polish) [Google Scholar]
- Cowie, J. Zmiany Klimatyczne. Przyczyny, Przebieg i Skutki dla Człowieka; Uniwersytet Warszawski: Warszawa, Poland, 2009; p. 452. (In Polish) [Google Scholar]
- FAOSTAT 2024. Food and Agriculture Organization af the United Nations. Production—Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 June 2024).
- United Nations. 2023. Available online: https://www.un.org (accessed on 29 November 2023).
- Chaves, M.M.; Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 2004, 407, 2365–2379. [Google Scholar] [CrossRef] [PubMed]
- Kopecka, R.; Kameniarova, M.; Černy, M.; Brzobohaty, B.; Novak, J. Abiotic stress in crop production. Int. J. Mol. Sci. 2023, 24, 6603. [Google Scholar] [CrossRef] [PubMed]
- Staniak, M.; Czopek, K.; Stępień-Warda, A.; Kocira, A.; Przybyś, M. Cold stress during flowering alters plant structure, yield and seed quality of different soybean genotypes. Agronomy 2021, 11, 2059. [Google Scholar] [CrossRef]
- Staniak, M.; Stępień-Warda, A.; Czopek, K.; Kocira, A.; Baca, E. Seeds quality and quantity of soybean [Glycine max (L.) Merr.] cultivars in response to cold stress. Agronomy 2021, 11, 520. [Google Scholar] [CrossRef]
- Staniak, M.; Szpunar-Krok, E.; Kocira, A. Responses of soybean to selected abiotic stresses—Photoperiod, temperature and water. Agriculture 2023, 13, 146. [Google Scholar] [CrossRef]
- Ohyama, T.; Minagawa, R.; Ishikawa, S.; Yamamoto, M.; Hung, N.V.P.; Ohtake, N.; Sueyoshi, K.; Sato, T.L.; Nagumo, Y.; Takahashi, Y. Soybean Seed Production and Nitrogen Nutrition. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J., Ed.; InTech: London, UK, 2013; pp. 115–157. [Google Scholar] [CrossRef]
- Lisar, S.Y.S.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M.M. Water stress in plants: Causes, effects and responses. In Water Stress; Rahman, I.M.M., Hasegawa, H., Eds.; InTech: Rijeka, Croatia, 2012; pp. 1–14. [Google Scholar]
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in Central Europe. Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Short-Term Outlook for EU Agricultural Markets in 2018 and 2019—Autumn 2018 (Brussels), p. 36. Available online: https://agriculture.ec.europa.eu/data-and-analysis/markets/outlook/short-term/previous-issues_en (accessed on 5 August 2024).
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Souza, G.M.; Catuchi, T.A.; Bertolli, S.C.; Soratto, R.P. Soybean under water deficit: Physiological and yield responses. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J., Ed.; InTech: Rijeka, Croatia, 2013; pp. 273–298. [Google Scholar] [CrossRef]
- Wu, Y.; Cosgrove, D.J. Adaptation of roots to low water potentials by changes in cel wall extensibility and cell wall proteins. J. Exp. Bot. 2000, 51, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, M.S.; Parsinejad, M.; Babazadeh, H. Efficacy of partial root drying technique for optimizing soybean crop production in semi-arid regions. Irrig. Drain. 2012, 61, 80–88. [Google Scholar] [CrossRef]
- Heatherly, L.G. Drought stress and irrigation effects on germination of harvested soybean seed. Crop Sci. 1993, 33, 777–781. [Google Scholar] [CrossRef]
- Dornbos, D.L.; Mullen, R.E. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Canadian J. Plant Sci. 1991, 71, 373–383. [Google Scholar] [CrossRef]
- Desclaux, D.; Huynh, T.T.; Roumet, P. Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci. 2000, 40, 716–722. [Google Scholar] [CrossRef]
- Ku, Y.S.; Au-Yeung, W.K.; Yung, Y.L.; Li, M.W.; Wen, C.Q.; Liu, X.; Lam, H.M. Drought stress and tolerance in soybean. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; Board, J., Ed.; InTech: Rijeka, Croatia, 2013; pp. 209–225. [Google Scholar] [CrossRef]
- Catuchi, T.A.; Vítolo, H.F.; Bertolli, S.S.; Souza, G.M. Tolerance to water deficiency between two soybean cultivars: Transgenic versus conventional. Crop Prod. Cienc. Rural. 2011, 31, 373–378. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Abbas, I.S. Soybean response to drought and seed inoculation. World Appl. Sci. J. 2012, 17, 55–60. [Google Scholar]
- Korte, L.L.; Williams, J.H.; Specht, J.E.; Sorensen, R.C. Irrigation of soybean genotypes during reproductive ontogeny. I. Agronomic responses. Crop Sci. 1983, 23, 521–527. [Google Scholar] [CrossRef]
- Frederick, J.R.; Camp, C.R.; Bauer, P.J. Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci. 2001, 41, 759–763. [Google Scholar] [CrossRef]
- Mertz-Henning, L.M.; Ferreira, L.C.; Henning, F.A.; Mandarino, J.M.G.; Santos, E.D.; Oliveira, M.C.N.D.; Nepomuceno, A.E.L.; Farias, J.R.B.; Neumaier, N. Effect of water deficit induced at vegetative and reproductive stages on protein and oil content in soybean grains. Agronomy 2018, 8, 3. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Saifullah; Ashraf, M.Y.; Ehsanullah. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci. 2011, 5, 764–778. [Google Scholar]
- Zhang, Z.; Liao, H.; Lucas, W.J. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J. Integr. Plant Biol. 2014, 56, 192–220. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Singh, A.K.; Singh, M.; Jamir, Z.; Srivastava, O.P. Effect of fertility levels and micronutrients on growth, nodulation, yield and nutrient uptake by pea (Pisum sativum L.). Legum. Res. 2014, 37, 93–97. [Google Scholar] [CrossRef]
- Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 2022, 31, 8519. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Maathuis, F. Physiological functions of mineral nutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; Hafeez Laghari, A.; Mustafa Bhabhan, G. Hussain Talpur, K., Bhutto, T.A., Wahocho, S.A., Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Frink, C.R.; Waggoner, P.E.; Ausubel, J.H. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 1999, 96, 1175–1180. [Google Scholar] [CrossRef]
- Kraiser, T.; Gras, D.E.; Gutiérrez, A.G.; González, B.; Gutiérrez, R.A. A holistic view of nitrogen acquisition in plants. J. Exp. Bot. 2011, 62, 1455–1466. [Google Scholar] [CrossRef]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnol. J. 2012, 10, 1011–1025. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A.; Bobrecka-Jamro, D.; Jańczak-Pieniążek, M.; Kotecki, A.; Kozak, M. Effect of nitrogen fertilisation and inoculation with Bradyrhizobium japonicum on the fatty acid profile of soybean (Glycine max (L.) Merrill) seeds. Agronomy 2021, 11, 941. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A. Quality evaluation indices for soybean oil in relation to cultivar. application of N fertilizer and seed inoculation with Bradyrhizobium japonicum. Foods 2022, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Ghannoum, O.; Evans, J.R.; Chow, W.S.; Andrews, T.J.; Conroy, J.P.; von Caemmerer, S. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol. 2005, 137, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Wang, Z.; Xu, K.; Li, L.; He, L.; Hu, H.; Wang, G. Validation of an enzyme-driven model explaining photosynthetic rate responses to limited nitrogen in crop plants. Front Plant Sci. 2020, 25, 533341. [Google Scholar] [CrossRef]
- Shi, H.; Ma, W.; Song, J.; Lu, M.; Rahman, S.; Bui, T.T.X.; Vu, D.D.; Zheng, H.; Wang, J.; Zhang, Y. Physiological and tran-548 scriptional responses of Catalpa bungee to drought stress under sufficient- and deficient-nitrogen conditions. Tree Physiol. 2017, 247, 1–12. [Google Scholar] [CrossRef]
- Roth, A.C.; Conley, S.P.; Gaska, J.M. Wisconsin Soybean Variety Test Results. Coop. Ext. Serv. A-3654. Univ. of Wisconsin Madison: Madison, WI, USA, 2014, pp. 1–38. Available online: https://coolbean.info/pdf/soybean_research/variety_trail_results/2014_Soybean_Trials_FINAL.pdf (accessed on 14 June 2024).
- Bellaloui, N.; Bruns, H.A.; Abbas, H.K.; Mengistu, A.; Fisher, D.K.; Reddy, K.N. Effects of row-type, row-spacing, seeding rate, soil-type, and cultivar differences on soybean seed nutrition under us Mississippi Delta conditions. PLoS ONE 2015, 10, e0129913. [Google Scholar] [CrossRef]
- Gaspar, A.P.; Laboski, C.A.M.; Naeve, S.L.; Conley, S.P. Dry matter and nitrogen uptake, partitioning, and removal across a wide range of soybean seed yield levels. Crop Sci. 2017, 57, 2170–2182. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation, and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Islam, M.M.; Ishibashi, Y.; Nakagawa, A.C.S.; Tomita, Y.; Zhao, X.; Iwaya-Inoue, M.; Arima, S.; Zheng, S.-H. Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Acta Physiol. Plant. 2017, 39, 42. [Google Scholar] [CrossRef]
- Kulig, B.; Klimek-Kopyra, A. Sowing date and fertilization level are effective elements increasing soybean productivity in rainfall deficit conditions in Central Europe. Agriculture 2023, 13, 115. [Google Scholar] [CrossRef]
- Rubiales, D.; Mikić, A. Introduction: Legumes in sustainable agriculture. Crit. Rev. Plant Sci. 2015, 34, 2–3. [Google Scholar] [CrossRef]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current progress in nitrogen fixing plants and microbiome research. Plants 2020, 9, 97. [Google Scholar] [CrossRef]
- Mastrodomenico, A.T.; Purcell, L.C. Soybean nitrogen fixation and nitrogen remobilization during reproductive development. Crop Sci. 2012, 52, 1281–1289. [Google Scholar] [CrossRef]
- Harper, J.E. Nitrogen metabolism. In Soybeans: Improvement, Production, and Uses, 2nd ed.; Wilcox, J.R., Ed.; Agronomy Monographs; ASA, CSSA, SSSA: Madison, WI, USA, 1987; pp. 497–533. [Google Scholar]
- Singh, S.; Varma, A. Structure, Function, and Estimation of Leghemoglobin. In Rhizobium Biology and Biotechnology; Hansen, A., Choudhary, D., Agrawal, P., Varma, A., Eds.; Soil Biology; Springer: Cham, Switzerland, 2017; p. 50. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Mens, C.; Hastwell, A.H.; Zhang, M.; Su, H.; Jones, C.H.; Chu, X.; Gresshoff, P.M. Legume nodulation: The host controls the party. Plant Cell Environ. 2019, 42, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Cordeiro, C.F.; Echer, F.R. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 2019, 9, 15606. [Google Scholar] [CrossRef]
- Albareda, M.; Navarro, D.N.R.; Temprano, F.J. Soybean inoculation: Dose, N fertilizer suplementacion and rhizobia persistence in soil. Field Crop Res. 2009, 113, 352–356. [Google Scholar] [CrossRef]
- Carranca, C. Legumes: Properties and symbiosis. In Symbiosis: Evolution, Biology and Ecological Effects; Camisão, A.H., Pedroso, C.C., Eds.; Animal Science, Issues and Professions, Nova Science Publishers: New York, NY, USA, 2013; pp. 67–94. Available online: https://www.researchgate.net/publication/264046636_Carranca_C_2013_Legumes_Properties_and_symbiosis_In_Camisao_AH_and_Pedroso_CC_Eds_Symbiosis_Evolution_Biology_and_Ecological_Effects_67-94_Animal_Science_Issues_and_Professions_Nova_Science_Publishers (accessed on 14 June 2024).
- Heitholt, J.J.; Kee, D.; Sloan, J.J.; MacKown, C.T.; Metz, S.; Kee, A.L.; Sutton, R.L. Soil-applied nitrogen and composted manure effects on soybean hay quality and farinas yield. J. Plant. Nutr. 2007, 30, 1717–1726. [Google Scholar] [CrossRef]
- Kinugasa, T.; Sato, T.; Oikawa, S.; Hirose, T. Demand and supply of N in seed production of soybean (Glycine max) at different N fertilization levels after flowering. J. Plant. Res. 2012, 125, 275–281. [Google Scholar] [CrossRef]
- Bobrecka-Jamro, D.; Szpunar-Krok, E. Soja. In Uprawa Roślin; Kotecki, A., Ed.; Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu: Wrocław, Poland, 2020; Volume 3, pp. 161–206. (In Polish) [Google Scholar]
- Napoles, M.C.; Guevara, E.; Montero, F.; Ferreira, A.R. Role of Bradyrhizobium japonicum induced by genistein on soybean stressed by water deficit. Span. J. Agric. Res. 2009, 7, 665–671. [Google Scholar] [CrossRef]
- Ray, J.D.; Heatherly, L.G.; Fritschi, F.B. Infuence of large amounts of nitrogen on nonirrigated and irrigated soybean. Crop Sci. 2006, 46, 52–60. [Google Scholar] [CrossRef]
- Purcell, L.C. Physiological responses of N2 fixation fixation to drought and selecting genotypes for improved N2 fixation. In Nitrogen Fixation in Crop Production; Krishnan, H.B., Emerich, D.W., Eds.; American Society of Agronomy: Madison, WI, USA, 2009; Volume 5, pp. 211–238. [Google Scholar]
- de Freitas, V.F.; Cerezini, P.; Hungria, M.; Nogueira, M.A. Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Appl. Soil Ecol. 2022, 172, 104352. [Google Scholar] [CrossRef]
- Minguez, M.I.; Sau, F. Responses of nitrate-fed and nitrogen-fixing soybeans to progressive water stress. J. Exp. Bot. 1989, 40, 497–502. [Google Scholar] [CrossRef]
- Djekoun, A.; Planchon, C. Water status effect on dinitrogen fixation and photosynthesis in soybean. Agron. J. 1991, 83, 316–322. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Purcell, L.C.; King, C.A.; Sneller, C.H.; Chen, P.; Vadez, V. Drought tolerance and yield increase of soybean resulting from improved symbiotic N fixation. Field Crops Res. 2007, 101, 68–71. [Google Scholar] [CrossRef]
- Brevedan, R.E.; Egli, D.B. Short periods of drought stress during seed filling, leaf senescence, and yield of soybean. Crop Sci. 2003, 43, 2083–2088. [Google Scholar] [CrossRef]
- Streeter, J.G. Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Envir. 2003, 26, 1199–1204. [Google Scholar] [CrossRef]
- Freeborn, J.R.; Holshouser, D.L.; Alley, M.M.; Powell, N.L.; Orcutt, D.M. Soybean yield response to reproductive stage soil-applied nitrogen and foliar-applied boron. Agron. J. 2001, 93, 1200–1209. [Google Scholar] [CrossRef]
- Ghani, R.A.; Kende, Z.; Tarnawa, A.; Omar, S.; Kassai, M.K.; Jolánkai, M. The effect of nitrogen application and various means of weed control on grain yield, protein and lipid content in soybean cultivation. Acta Aliment. 2021, 50, 537–547. [Google Scholar] [CrossRef]
- Purcell, L.C.; King, C.A. Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. J. Plant Nutr. 1996, 19, 969–993. [Google Scholar] [CrossRef]
- Starling, M.E.; Wood, C.W.; Weaver, D.B. Starter nitrogen and growth habit effects on late -planted soybean. Agron. J. 1998, 90, 658–662. [Google Scholar] [CrossRef]
- Kaschuk, G.; Nogueira, M.A.; De Luca, M.J.; Hungria, M. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef] [PubMed]
- Bobrecka-Jamro, D.; Jarecki, W.; Buczek, J. Response of soya bean to different nitrogen fertilization levels. J. Elem. 2018, 23, 559–568. [Google Scholar] [CrossRef]
- Basal, O.; Szabó, A. Physiomorphology of soybean as affected by drought stress and nitrogen application. Scientifica 2020, 6093836. [Google Scholar] [CrossRef] [PubMed]
- Szpunar–Krok, E.; Bobrecka-Jamro, D.; Pikuła, W.; Jańczak-Pieniążek, M. Effect of nitrogen fertilization and inoculation with Bradyrhizobium japonicum on nodulation and yielding of soybean. Agronomy 2023, 13, 1341. [Google Scholar] [CrossRef]
- Zhang, M.C.; Sun, W.X.; Liu, Y.Y.; Luo, S.G.; Zhao, J.; Wu, Q.; Wu, Z.Y.; Jiang, Y. Timing of N application affects net primary production of soybean with different planting densities. J. Integ. Agric. 2014, 13, 2778–2787. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: Amsterdam, Netherlands, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Abid, A.A.; Mozammil, H.; Hafiz Saqib, K.T.; Touseef, A.A.; Muhammad, A. Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turk. J. Field Crops. 2016, 21, 36–43. [Google Scholar] [CrossRef]
- Danial, H.F.; Ewees, M.S.; Moussa, S.A. Significance of influence potassium on the tolerance to induce moisture stress and biological activity of some legume crops grown on a sandy soil Egypt. Egypt. J. Soil Sci. 2010, 43, 180–204. [Google Scholar]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; El-Sherif, A.M.A.; Ali, M.M.; Abd El-Wahed, M.H. Combined effect of deficit irrigation and potassium fertilizer on physiological response, plant water status and yield of soybean in calcareous soil. Arch. Agron. Soil Sci. 2016. [Google Scholar] [CrossRef]
- Steiner, F.; Zuffo, A.M.; da Silva Oliveira, C.E.; Ardon, H.J.V.; de Oliveira Sousa, T.; Aguilera, J.G. Can potassium fertilization alleviate the adverse effects of drought stress on soybean plants? Rev. Agro. Amb. 2020, 15, e8240. [Google Scholar] [CrossRef]
- Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant adaptation to drought stress [version 1; peer review: 3 approved]. F1000Research 2016, 5, 1554. [Google Scholar] [CrossRef]
- Wang, X.G.; Zhao, X.H.; Jiang, C.J.; Li, C.H.; Cong, S.; Wu, D.; Chen, Y.Q.; Yu, H.Q.; Wang, C.Y. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 2015, 14, 856–863. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Cotrim, G.; da Silva, D.M.; da Graça, J.P.; de Oliveira Junior, A.; de Castro, C.; Zocolo, G.J.; Lannes, L.S.; Hoffmann-Campo, C.B. Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability. Phytochemistry 2023, 205, 113472. [Google Scholar] [CrossRef] [PubMed]
- Martineau, E.; Domec, J.C.; Bosc, A.; Denoroy, P.; Fandino, V.A.; Lavres, J., Jr.; Jordan-Meille, L. The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environ. Exp. Bot. 2017, 134, 62–71. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Loreto, F.; Cornic, G.; Sharkey, T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. Plant Biol. 2004, 6, 269–279. [Google Scholar] [CrossRef]
- Soleimanzadeh, H.; Habibi, D.; Ardakani, M.R.; Paknejad, F.; Rejali, F. Effect of potassium levels on antioxidant enzymes and malondialdehyde content under drought stress in sunflower (Helianthus annuus L.). Am. J. Agric. Biol. Sci. 2010, 5, 56–61. [Google Scholar] [CrossRef]
- Ghannoum, O.; Conroy, J.P. Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C3 (Panicum laxum) but not two C4 (P. coloratum and Cenchrus ciliaris) grasses. Funct. Plant Biol. 2007, 34, 72–81. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Jin, Y.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Siddique, K.H.M.; Li, F.M. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, L.; Li, J.; Lyu, X.; Li, S.; Wang, C.; Wang, X.; Ma, C.; Yan, C. Multi-omics analysis of the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots. Front. Plant Sci. 2022, 13, 992036. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, M.E.; Plaxton, W.C. Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol. 1993, 101, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, G.M. The global phosphorus cycle: Past, present, and future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Wang, X.R.; Shen, J.B.; Liao, H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci. 2010, 179, 302–306. [Google Scholar] [CrossRef]
- Li, C.C.; Gui, S.H.; Yang, T.; Walk, T.; Wang, X.; Liao, H. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann. Bot. 2012, 109, 275–285. [Google Scholar] [CrossRef]
- Payne, W.A.; Malcolm, D.C.; Hossner, L.R.; Lascao, R.J.; Onken, A.B.; Wendt, C.W. Soil phosphorus availability and pearl millet water-use efficiency. Crop Sci. 1992, 32, 1010–1015. [Google Scholar] [CrossRef]
- Garg, B.K.; Burman, U.; Kathju, S. The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. J. Plant Nutr. Soil Sci. 2004, 167, 503–508. [Google Scholar] [CrossRef]
- Brooks, A. Effects of phosphorous nutrition on ribulose-1, 5-biphjosphate carboxylase activation, photosynthetic quantum yield and amount of some Calvin cycle metabolism in spinach leaves. Aus. J. Plant. Physiol. 1986, 13, 221–237. [Google Scholar] [CrossRef]
- Rasnick, M. Effect of mannitol and polyethylene glycol on phosphorus uptake by maize plants. Ann. Bot. 1970, 34, 497–502. [Google Scholar] [CrossRef]
- Brück, H.; Payne, W.A.; Sattelmacher, B. Effects of phosphorus and water supply on yield, transpiration water-use efficiency, and carbon isotope discrimination of pearl millet. Crop Sci. 2000, 40, 120–125. [Google Scholar] [CrossRef]
- Palta, J.P. Stress interactions at the cellular and membrane levels. Hort. Sci. 1990, 25, 1377. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Effects of salinity and macronutrient levels on micronutrients in wheat. J. Plant Nutr. 2001, 24, 273–281. [Google Scholar] [CrossRef]
- Xavier, L.J.C.; Germida, J.J. Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol. Biochem. 2002, 34, 181–188. [Google Scholar] [CrossRef]
- Hungria, M.; Araújo, R.S.; Silva Júnior, E.B.; Zilli, J.E. Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agron. J. 2017, 109, 1106–1112. [Google Scholar] [CrossRef]
- Ogoke, I.J.; Carsky, R.J.; Togun, A.O.; Dashiell, K. Effect of P fertilizer application on N balance of soybean crop in the guinea savanna of Nigeria. Agr. Ecosyst. Environ. 2003, 100, 153–159. [Google Scholar] [CrossRef]
- Santos, M.G.; Ribeiro, R.V.; Oliveira, R.F.; Machado, E.C.; Pimentel, C. The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci. 2006, 170, 659–664. [Google Scholar] [CrossRef]
- Oldham, L. Secondary plant nutrients: Calcium, magnesium, and sulfur. Mississippi State University information sheet 1039. 2019. Available online: https://extension.msstate.edu (accessed on 19 June 2024).
- Uchida, R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000. [Google Scholar]
- Galeriani, T.M.; Neves, G.O.; Santos Ferreira, J.H.; Oliveira, R.N.; Oliveira, S.L.; Calonego, J.C.; Crusciol, C.A.C. Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield. Plants 2022, 11, 2937. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hu, B. Electrical properties of plant root cell plasma membrane influence the alleviation of Al and Cu phytotoxicity by Ca and Mg cations. Enviro. Sci. Pollut. Res. 2021, 28, 48022–48037. [Google Scholar] [CrossRef]
- Bedassa, T.A.; Abebe, A.T.; Tolessa, A.R. Tolerance to soil acidity of soybean (Glycine max L.) genotypes under field conditions Southwestern Ethiopia. PLoS ONE 2022, 17, e0272924. [Google Scholar] [CrossRef] [PubMed]
- Cortes, P.M.; Sinclair, T.R. Gas exchange of field-grown soybean under drought. Agron. J. 1986, 78, 454–458. [Google Scholar] [CrossRef]
- Sorooshzadeh, A.; Barthakur, N.N. Water stress and calcium concentration during the seed-filling stage of soybean affect senescence. Acta Agric. Scand. B—Plant Soil Sci. 1998, 48, 79–84. [Google Scholar] [CrossRef]
- Sawicki, M.; Aït Barka, E.; Clément, C.; Vaillant-Gaveau, N.; Jacquard, C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J. Exp. Bot. 2015, 66, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Ogunremi, L.T.; Lal, R.; Babalola, O. Effects of water table depth and calcium peroxide application on cowpea (Vigna unguiculata) and soybean (Glycine max). Plant Soil 1981, 63, 275–281. [Google Scholar] [CrossRef]
- Fioreze, S.L.; Tochetto, C.; Coelho, A.E.; Melo, H.F. Effects of calcium supply on soybean plants. Com. Sci. 2018, 9, 219–225. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef]
- Yang, N.; Jiang, J.; Xie, H.; Bai, M.; Xu, Q.; Wang, X.; Yu, X.; Chen, Z.; Guan, Y. Metabolomics reveals distinct carbon and nitrogen metabolic responses to magnesium deficiency in leaves and roots of soybean [Glycine max (Linn.) Merr.]. Front. Plant Sci. 2017, 8, 2091. [Google Scholar] [CrossRef]
- Santos, A.S.; Pinho, D.S.; da Silva, A.C.; de Brito, R.R.; de Jesus Lacerda, J.J.; da Silva, E.M.; Batista, J.Y.N.; da Fonseca, B.S.F.; Gomes-Filho, E.; de Oliveira Paula-Marinho, S.; et al. Magnesium supplementation alleviates drought damage during vegetative stage of soybean plants. PLoS ONE 2023, 18, e0289018. [Google Scholar] [CrossRef]
- Rodrigues, V.A.; Crusciol, C.A.C.; Bossolani, J.W.; Moretti, L.G.; Portugal, J.R.; Mundt, T.T.; de Oliveira, S.L.; Garcia, A.; Calonego, J.C.; Lollato, R.P. Magnesium foliar supplementation increases grain yield of soybean and maize by improving photosynthetic carbon metabolism and antioxidant metabolism. Plants 2021, 10, 797. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.N.; Singh, L.N.K.; Singh, M.S.; Singh, S.B.; Singh, K.K. Influence of sulphur and boron fertilization on yield, quality, nutrient uptake and economics of soybean (Glycine max) under Upland Conditions. J. Agric. Sci. 2012, 4, 1–10. [Google Scholar] [CrossRef]
- Havlin, L.J.; Beaton, D.J.; Tisdale, L.S.; Nelson, L.W. Soil Fertility and Fertilizers, 6th ed.; Prentice Hall of Indian: Upper Saddle River, NJ, USA, 1999; pp. 220–228, 319–346. [Google Scholar]
- Samanta, S.; Singh, A.; Roychoudhury, A. Involvement of sulfur in the regulation of abiotic stress tolerance in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; Roychoudhury, A., Tripathi, D.K., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Sexton, P.J.; Paek, N.C.; Shibles, R. Soybean sulphur and nitrogen balance under varying levels of available sulphur. Crop Sci. 1998, 37, 1801–1806. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulphur in crop production–invited paper. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Gaspar, A.P.; Laboski, C.A.M.; Naeve, S.L.; Conley, S.P. Secondary and micronutrient uptake, partitioning, and removal across a wide range of soybean seed yield levels. Agron. J. 2018, 110, 1328–1338. [Google Scholar] [CrossRef]
- Ceccotti, S.P.; Morris, R.J.; Messick, D.L. A Global Overview of the Sulphur Situation: Industry’s Background, Market Trends, and Commercial Aspects of Sulphur Fertilizers. In Sulphur in Agroecosystems; Schnug, E., Ed.; Springer: Dordrecht, the Netherlands, 1998; pp. 175–202. [Google Scholar] [CrossRef]
- Pias, O.H.D.C.; Tiecher, T.; Cherubin, M.R.; Mazurana, M.; Bayer, C. Crop yield responses to sulfur fertilization in Brazilian No-Till soils: A systematic review. Rev. Bras. Ciência Solo 2019, 43, 1–21. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Ferraris, G.; Quiroga, A.; Barraco, M.; Vivas, H.; Prystupa, P.; Echeverría, H.; Gutiérrez Boem, F.H. Identifying sulfur deficient fields by using sulfur content; N:S ratio and nutrient stoichiometric relationships in soybean seeds. Field Crops Res. 2012, 135, 107–115. [Google Scholar] [CrossRef]
- Ming Xian, F.A.N. Sulphur—Essential to the fertilizer industry as a raw material, plant nutrient and soil amendment. In Proceedings of the 15th AFA International Annual Fertilizers Forum & Exhibition, Cairo, Egypt, 10–12 February 2009; pp. 1–15. Available online: https://ureaknowhow.com/wp-content/uploads/2015/04/2009-Fan-TSI-S-as-raw-material-PNS-and-Soil-Amendments.pdf (accessed on 14 June 2024).
- de Borja Reis, A.F.; Moro Rosso, L.H.; Davidson, D.; Kovács, P.; Purcell, L.C.; Below, F.E.; Casteel, S.N.; Knott, C.; Kandel, H.; Naeve, S.L.; et al. Sulfur fertilization in soybean: A meta-analysis on yield and seed composition. Eur. J. Agron. 2021, 127, 126285. [Google Scholar] [CrossRef]
- Hussain, K.; Islam, M.; Siddique, M.T.; Hayat, R.; Mohsan, S. Soybean growth and nitrogen fixation as affected by sulfur fertilization and inoculation under rainfed conditions in Pakistan. Int. J. Agric. Biol. 2011, 13, 951–955. [Google Scholar]
- Divito, G.A.; Sadras, V.O. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 2014, 156, 161–171. [Google Scholar] [CrossRef]
- Wooding, F.J.; Paulsen, G.M.; Murphy, L.S. Response of nodulated and nonnodulated soybean seedlings to sulfur nutrition. Agron. J. 1970, 62, 277–280. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Yang, X.; Deng, L.; Lu, X. Enhancing Soybean Yield: The synergy of sulfur and rhizobia inoculation. Plants 2023, 12, 3911. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.; Pacyna, S.; Spoth, K.; Schulz, M. Low levels of ferredoxin, ATP and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biol. Fert. Soils 2008, 44, 909–916. [Google Scholar] [CrossRef]
- Lange, A. Influence of S Supply on the Biological Nitrogen Fixation of Legumes; Dissertationsschrift an der Rheinischen Friedrich-Wilhelms-Universität Bonn: Bonn, Germany, 1998. [Google Scholar]
- Cigelske, B.D.; Kandel, H.; DeSutter, T.M. Soybean nodulation and plant response to nitrogen and sulfur fertilization in the northern US. Agric. Sci. 2020, 11, 592–607. [Google Scholar] [CrossRef]
- Almeida, L.F.A.; Correndo, A.; Ross, J.; Licht, M.; Casteel, S.; Singh, M.; Naeve, S.; Vann, R.; Bais, J.; Kandel, H.; et al. Soybean yield response to nitrogen and sulfur fertilization in the United States: Contribution of soil N and N fixation processes. Eur. J. Agron. 2023, 145, 126791. [Google Scholar] [CrossRef]
- Das, S.; Paul, S.K.; Rahman, M.R.; Roy, S.; Uddin, F.M.J.; Rashid, M.H. Growth and yield response of soybean to sulphur and boron application. J. Bangladesh Agril. Univ. 2022, 20, 12–19. [Google Scholar] [CrossRef]
- Akter, F.; Islam, M.N.; Shamsuddoha, A.T.M.; Bhuiyan, M.S.I.; Shilpi, S. Effect of phosphorus and sulphur on growth and yield of soybean (Glycine max L.). Int. J. Stress Manag. 2013, 4, 555–560. [Google Scholar]
- Chauhan, S.; Titov, A.; Tomar, D.S. Effect of potassium, sulphur and zinc on growth, yield and oil content in soybean (Glycine max L.) in vertisols of Central India. Indian J. Appl. Res. 2013, 3, 489–491. [Google Scholar] [CrossRef]
- Imsong, W.; Tzudir, L.; Longkumer, L.T.; Gohain, T.; Kawikhonliu, Z. Effect of sulphur and zinc fertilization on growth and yield of soybean [Glycine max (L.) Merrill] under Nagaland Condition. Agric. Sci. Dig. 2023, 43, 637–642. [Google Scholar] [CrossRef]
- Singh, G.; Pathania, P.; Rana, S.S.; Kumar, S.; Sharma, V.K. Response of soybean to levels and sources of sulphur on growth and yield under mid—Hill conditions of Himachal. Int. J. Chem. Stud. 2018, 6, 2903–2907. [Google Scholar]
- da Fonseca, B.S.F.; Santos, A.S.; Da Silva, A.C.; De Brito, R.R.; Pinho, D.S.; Batista, J.Y.N.; De Jesus Lacerda, J.J.; De Souza Miranda, R. Sulfur Supplementation Mitigates Drought Deleterious Effects in Soybean Plants. 2021. Available online: https://convibra.org/publicacao/26378/ (accessed on 29 May 2024).
- Swain, R.; Sahoo, S.; Behera, M.; Rout, G.R. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Front Plant Sci. 2023, 9, 1104874. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.; Santos, A.; Pinho, D.S.; de Oliveira, S.; Marinho, P.; de Brito, R.R.; De Souza Miranda, R. Sulfur supplementation mitigates drought-induced deleterious effects on soybean plants. In Estudos em Ciências Humanas e Sociais—11; Editora Poisson: Belo Horizonte, Brasil, 2023. [Google Scholar] [CrossRef]
- Tamagno, S.; Balboa, G.R.; Assefa, Y.; Kovács, P.; Casteel, S.N.; Salvagiotti, F.; García, F.O.; Stewart, W.M.; Ciampitti, I.A. Nutrient partitioning and stoichiometry in soybean: A synthesis-analysis. Field Crops Res. 2017, 200, 18–27. [Google Scholar] [CrossRef]
- Sadras, V.O. The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res. 2006, 95, 13–29. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, X.; Wei, D.; Lin, X.; Qui, S.; Ciampitti, I.; He, P. Soybean yield, nutrient up-take and stoichiometry under different climate regions of northeast China. Sci. Rep. 2020, 10, 8431. [Google Scholar] [CrossRef]
- Mao, B.; Wang, Y.; Zhao, T.-H.; Zhao, Q.; San, Y.; Xiao, S.-S. Response of carbon, nitro-gen and phosphorus concentration and stoichiometry of plants and soils during a soy-bean growth season to O3 stress and straw return in Northeast China. Sci. Total Environ. 2022, 822, 153573. [Google Scholar] [CrossRef] [PubMed]
- Hitsuda, K.; Sfredo, G.J.; Klepker, D. Diagnosis of sulfur deficiency in soybean using seeds. Soil Sci. Soc. Am. J. 2004, 68, 1445–1451. [Google Scholar] [CrossRef]
- Letham, J.L.; Ketterings, Q.M.; Cherney, J.H.; Overton, T.R. Impact of sulfur application on soybean yield and quality in New York. Agron. J. 2021, 113, 2858–2871. [Google Scholar] [CrossRef]
- Brooks, K.; Mourtzinis, S.; Conley, S.P.; Reiter, M.S.; Gaska, J.; Holshouser, D.L.; Irby, T.; Kleinjan, J.; Knott, C.; Lee, C.; et al. Soybean yield response to sulfur and nitrogen additions across diverse U.S. environments. Agron. J. 2023, 115, 1. [Google Scholar] [CrossRef]
- Ibañez, T.B.; de Melo Santos, L.F.; de Marcos Lapaz, A.; Ribeiro, I.V.; Ribeiro, F.V.; dos Reis, A.R.; Moreira, A.; Heinrichs, R. Sulfur modulates yield and storage proteins in soybean grains. Soil Plant Nutr. Sci. Agric. 2021, 78, 1. [Google Scholar] [CrossRef]
- Setubal, I.S.; Andrade Júnior, A.S.d.; Silva, S.P.d.; Rodrigues, A.C.; Bonifácio, A.; Silva, E.H.F.M.d.; Vieira, P.F.d.M.J.; Miranda, R.d.S.; Cafaro La Menza, N.; Souza, H.A.d. Macro and Micro-Nutrient Accumulation and Partitioning in Soybean Affected by Water and Nitrogen Supply. Plants 2023, 12, 1898. [Google Scholar] [CrossRef] [PubMed]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Couëdel, A.; Alletto, L.; Justes, É. The acquisition of macro- and micronutrients is synergistic in species mixtures: Example of mixed crucifer-legume cover crops. Front. Agron. 2023, 5, 1223639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniak, M.; Szpunar-Krok, E.; Wilczewski, E.; Kocira, A.; Podleśny, J. The Function of Macronutrients in Helping Soybeans to Overcome the Negative Effects of Drought Stress. Agronomy 2024, 14, 1744. https://doi.org/10.3390/agronomy14081744
Staniak M, Szpunar-Krok E, Wilczewski E, Kocira A, Podleśny J. The Function of Macronutrients in Helping Soybeans to Overcome the Negative Effects of Drought Stress. Agronomy. 2024; 14(8):1744. https://doi.org/10.3390/agronomy14081744
Chicago/Turabian StyleStaniak, Mariola, Ewa Szpunar-Krok, Edward Wilczewski, Anna Kocira, and Janusz Podleśny. 2024. "The Function of Macronutrients in Helping Soybeans to Overcome the Negative Effects of Drought Stress" Agronomy 14, no. 8: 1744. https://doi.org/10.3390/agronomy14081744
APA StyleStaniak, M., Szpunar-Krok, E., Wilczewski, E., Kocira, A., & Podleśny, J. (2024). The Function of Macronutrients in Helping Soybeans to Overcome the Negative Effects of Drought Stress. Agronomy, 14(8), 1744. https://doi.org/10.3390/agronomy14081744