Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Description and Field Management
2.2. Treatments and Experimental Design
2.3. Crop Parameters Measured
2.3.1. Biomass, Nitrogen Percentage (N%), and Plant Nitrogen Uptake (N Uptake)
2.3.2. Grain Yield and Quality
2.4. Drone-Based Multispectral Imagery
2.5. Data Analysis
3. Results
3.1. Biomass, N%, and N Uptake
3.2. Rice Grain Yield and Quality
3.3. Spectral Measurements
3.4. Relationship Between N Uptake and the Vegetation Indices at Panicle Initiation (PI)
4. Discussion
4.1. VIs Comparison for Monitoring Rice N Plant Status at Panicle Initiation
4.2. Effects of Water Management on the Vegetation Indices and N Uptake at PI
4.3. Considerations and Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leridon, H. World population outlook: Explosion or implosion? Popul. Soc. 2020, 573, 1–4, ISSN: 0184-7783. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture of the United Nations. How to Feed the World in 2050. 2009, pp. 1–35. Available online: https://www.fao.org/publications (accessed on 25 October 2024).
- Carracelas, G.; Hornbuckle, J.; Rosas, J.; Roel, A. Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay. Agric. Water Manag. 2019, 222, 161–172. [Google Scholar] [CrossRef]
- INIA. Informes de Zafras ARROZ. Base de Datos de Empresas Arroceras. Grupo de Trabajo Arroz. 2024. Available online: http://inia.uy/investigación-e-innovación/programas-nacionales-de-investigación/Programa-Nacional-de-Investigacion-en-Produccion-de-Arroz/informes-de-zafras. (accessed on 1 October 2024).
- DIEA; MGAP. Ministry of Livestock Agriculture and Fisheries. Anual Estadístico. 2000–2023. 2023. Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/anuario-estadistico-agropecuario-2021. (accessed on 1 September 2024).
- Carracelas, G.; Guilpart, N.; Cassman, K.G.; Grassini, P. Distinguishing between yield plateaus and yield ceilings: A case study of rice in Uruguay. Field Crop. Res. 2023, 292, 108808. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.R.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.; et al. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance-A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef]
- Dunn, B.; Dunn, T. Rice Variety Nitrogen and Agronomic Management; Agrifutures: Wagga Wagga, Australia, 2021; Available online: https://agrifutures.com.au/product/rice-variety-nitrogen-and-agronomic-management/ (accessed on 1 September 2024).
- Tamagno, S.; Eagle, A.J.; McLellan, E.L.; van Kessel, C.; Linquist, B.A.; Ladha, J.K.; Pittelkow, C.M. Quantifying N leaching losses as a function of N balance: A Path to sustainable food supply chains. Agric. Ecosyst. Environ. 2022, 324, 107714. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Adviento-Borbe, M.A.; van Kessel, C.; Hill, J.E.; Linquist, B.A. Optimizing rice yields while minimizing yield-scaled global warming potential. Global Change Biol. 2014, 20, 1382–1393. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H.; Sauer, T.J.; Dold, C.; O’brien, P.; Wacha, K. Applications of vegetative indices from remote sensing to agriculture: Past and future. MDPI Multidisciplinary Digital Publishing Institute. Inventions 2019, 4, 71. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Combining unmanned aerial vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Front. Plant Sci. 2018, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Stavrakoudis, D.; Katsantonis, D.; Kadoglidou, K.; Kalaitzidis, A.; Gitas, I.Z. Estimating rice agronomic traits using drone-collected multispectral imagery. Remote Sens. 2019, 11, 545. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Zhao, G.; Yuan, F.; Ma, X.; Tan, C.; Yu, W.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Gnyp, M.L.; Yao, Y.; Cao, Q.; Wang, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sens. 2017, 9, 227. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Kapustina, L.; Izakova, N.; Makovkina, E.; Khmelkov, M. The global drone market: Main development trends. SHS Web Conf. 2021, 129, 11004. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.W.; Dehaan, R.; Schmidtke, L.M.; Dunn, T.S.; Meder, R. Using field-derived hyperspectral reflectance Measurement to identify the essential wavelengths for predicting nitrogen uptake of rice at panicle initiation. J. Near Infrared Spectrosc. 2016, 24, 473–483. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Dunn, B.W.; Robson, A.J.; Dunn, T.S.; Dehaan, R.L. Modeling mid-season rice nitrogen uptake using multispectral satellite data. Remote Sens. 2019, 11, 1837. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L.M.P. Remote Sensing Monitoring of Rice Fields: Towards Assessing Water Saving Irrigation Management Practices. Front. Remote Sens. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Rehman, T.H.; Lundy, M.E.; Linquist, B.A. Comparative Sensitivity of Vegetation Indices Measured via Proximal and Aerial Sensors for Assessing N Status and Predicting Grain Yield in Rice Cropping Systems. Remote Sens. 2022, 14, 2770. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of Paddy Rice Nitrogen Content and Accumulation both at Leaf and Plant Levels from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Dunn, B.W.; Robson, A.J. Rice nitrogen status detection using commercial-scale imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102627. [Google Scholar] [CrossRef]
- Raper, T.B.; Varco, J.J. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precis. Agric. 2015, 16, 62–76. [Google Scholar] [CrossRef]
- Ballester, C.; Hornbuckle, J.; Brinkhoff, J.; Smith, J.; Quayle, W. Assessment of In-Season Cotton Nitrogen Status and Lint Yield Prediction from Unmanned Aerial System Imagery. Remote Sens. 2017, 9, 1149. [Google Scholar] [CrossRef]
- Ballester, C.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–720. ISBN 978-1-118-34328-9. [Google Scholar]
- IRRI. International Rice Research Institute. Rice Knowledge Bank IRRI. Available online: http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management#for-safe-alternate-wetting-and-drying (accessed on 1 September 2024).
- Lampayan, R.M.; Palis, F.G.; Flor, R.B.; Bouman, B.A.M.; Quicho, E.D.; de Dios, J.L.; Espiritu, A.; Sibayan, E.B.; Vicmudo, V.R.; Lactaoen, A.T.; et al. Adoption and dissemination of “safe alternate wetting and drying” in pump irrigated rice areas in the Philippines. In Proceedings of the 60th International Executive Council Meeting & 5th Asian Regional Conference, New Delhi, India, 6–11 December 2009; pp. 1–11. [Google Scholar]
- Carrijo, D.R.; Akbar, N.; Reis, A.F.B.; Li, C.; Gaudin, A.C.M.; Parikh, S.J.; Linquist, B.A. Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. Field Crop. Res. 2018, 222, 101–110. [Google Scholar] [CrossRef]
- Sun, T.; Fang, H.; Liu, W.; Ye, Y. Impact of water background on canopy reflectance anisotropy of a paddy rice field from multi-angle measurements. Agric. For. Meteorol. 2017, 233, 143–152. [Google Scholar] [CrossRef]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review. Remote Sens. 2022, 14, 5712. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 29 October 2024).
- FERTILIZ-ARR—INIA. Available online: https://www.inia.uy/investigacion-e-innovacion/programas-nacionales-de-investigacion/Programa-Nacional-de-Investigacion-en-Produccion-de-Arroz/fertiliz-arr-una-herramienta-inia-para-la-fertilizacion-en-arroz (accessed on 1 July 2024).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll, carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. In Remote Sensing for Agriculture and the Environment; Stamatiadis, S., Lynch, J.M., Schepers, J.S., Eds.; Peripheral Editions: Ella, Greece, 2004; pp. 78–94. Available online: https://digitalcommons.unl.edu/natrespapers/263/ (accessed on 31 October 2024).
- Ballester, C.; Brinkhoff, J.; Quayle, W.C.; Hornbuckle, J. Monitoring the effects of water stress in cotton using the green, red vegetation index and red edge ratio. Remote Sens. 2019, 11, 873. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Rehman, T.H.; Lundy, M.E.; Reis, A.F.D.B.; Akbar, N.; Linquist, B.A. Reflectance Measurements from Aerial and Proximal Sensors Provide Similar Precision in Predicting the Rice Yield Response to Mid-Season N Applications. Sensors 2023, 23, 6218. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org/ (accessed on 15 October 2024).
- Chambers, J.M. Linear models (Chapter 4). In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Routledge: New York, NY, USA, 1992; pp. 1–624. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Schlemmera, M.; Gitelson, A.; Schepersa, J.; Fergusona, R.; Peng, Y.; Shanahana, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Li, G.S.; Wu, D.H.; Su, Y.C.; Kuo, B.J.; Yang, M.D.; Lai, M.H.; Lu, H.Y.; Yang, C.Y. Prediction of plant nutrition state of rice under water-saving cultivation and panicle fertilization application decision making. Agronomy 2021, 11, 1626. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubana, B.; Dalen, M.; Harrell, D. Evaluation of Red and Red-Edge Reflectance-Based Vegetation Indices for Rice Biomass and Grain Yield Prediction Models in Paddy Fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Hoshi, T.; Ishida, T.; Nakayama, K. Experimental Study on the Spectral Reflectance of Paddy Soils in the Field Survey; ISE-TR-84-47; Institute of Information Science and Electronics, University of Tukuba: Tukuba, Japan, 1984. [Google Scholar]
- Ito, T.; Minamino, I.; Umeki, S. Analysis of Fertilization Effects on Rice and Wheat by Time-Series Clustering of Vegetation Index Data. In Proceedings of the 5th International Symposium on Advanced Technologies and Applications in the Internet of Things (ATAIT 2023), Kusatsu, Japan, 28–29 August 2023; CEUR Workshop Proceedings. Available online: https://ceur-ws.org/Vol-3459/paper3.pdf (accessed on 1 September 2024).
- Tuong, T.P.; Bouman, B.A.M. Rice production in water scarce environments. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing: Wallingford, UK, 2003; pp. 53–67. [Google Scholar] [CrossRef]
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Champness, M.; Ballester, C.; Hornbuckle, J. Effect of Soil Moisture Deficit on Aerobic Rice in Temperate Australia. Agronomy 2023, 13, 168. [Google Scholar] [CrossRef]
- Castillo, J.; Terra, J.; Ferreira, R.; Méndez, R. Fertilización N en Arroz en Base a Indicadores Objetivos. ¿qué Sabemos Luego de 3 años de Experimentación? Treinta y Tres, INIA (Serie Actividades de Difusión 735), Cap.3. 2012, pp. 4–6. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/4006/1/Ad-735-3ManSuelNutVeg-4-6.pdf (accessed on 30 October 2024).
Soil Parameters | Seasons | |
---|---|---|
S1: 2021–2022 | S2: 2022–2023 | |
pH (water) | 7.1 | 6.4 |
Tit. Acidity (meq/100 g) | 1.7 | 2.8 |
Organic Matter % | 4.0 | _ |
P Citric Acid (ppm) | 3.0 | 8.0 |
Ca (meq/100 g) | 35.2 | 30.7 |
Mg (meq/100 g) | 18.6 | 14.2 |
K int. (meq/100 g) | 0.4 | 0.4 |
Na (meq/100 g) | 0.3 | 0.5 |
PMN (mg/kg) | 11.0 | 25.0 |
CIC | 56.2 | 48.6 |
Total Bases | 54.5 | 15.8 |
Bases Saturation (%) | 97 | 94 |
Soil classification [41] | Vertisols (VR) |
Vegetation Index | Formulation | Reference |
---|---|---|
NDVI | (NIR − R)/(NIR + R) | [43] |
NDRE | (NIR − RE)/(NIR + RE) | [21,44] |
NDRE2 | ((NIR − RE)/(NIR + RE))2 | [24] |
CLg | NIR/G − 1 | [22,28,45] |
CLr | NIR/R − 1 | [22,28] |
CLre | NIR/RE − 1 | [22,28] |
SCCCI | NDRE/NDVI | [31] |
RE-Ratio | RE/R | [33,46] |
Simple-Ratio | NIR/R | [22] |
Treatments | S1: 2021/2022 | S2: 2022/2023 | ||||
---|---|---|---|---|---|---|
Biomass DM kg ha−1 | Nitrogen (N%) | N Uptake Kg N ha−1 | Biomass DM kg ha−1 | Nitrogen (N %) | N Uptake Kg N ha−1 | |
Irrigation | ||||||
AWD | 1799 | 1.9 | 34.4 | 1526 | 2.4 | 37.1 |
C | 2150 | 1.9 | 39.4 | 1585 | 2.4 | 38.9 |
Irrigation | ns | ns | ns | ns | ns | ns |
effect | ||||||
N rate | ||||||
N0 | 1450 c | 1.8 | 26.2 c | 1206 b | 2.0 b | 24.4 b |
N1 | 1874 bc | 1.8 | 34.8 bc | 1473 ab | 2.1 b | 30.6 b |
N2 | 2127 ab | 1.9 | 38.6 ab | 1718 a | 2.8 a | 47.0 a |
N3 | 2448 a | 2.0 | 48.0 a | 1826 a | 2.8 a | 50.0 a |
N-rate effect | *** | ns | *** | ** | ** | ** |
Irrigation × N-rate effect | ns | ns | ns | ns | ns | ns |
Mean | 1975 | 1.9 | 36.9 | 1556 | 2.4 | 38.0 |
Treatments | S1: 2021–2022 | S2: 2022–2023 | ||||
---|---|---|---|---|---|---|
Rice Yield (Mg ha−1) | Whole Grain % | Total White % | Rice Yield (Mg ha−1) | Whole Grain % | Total White % | |
Irrigation | ||||||
AWD | 7.2 | 64.9 | 70.9 | 10.1 | 50.9 | 70.2 |
C | 6.2 | 65.0 | 70.3 | 10.8 | 45.7 | 70.0 |
Irrigation effect | ns | ns | ns | ns | ns | ns |
Nitrogen rate | ||||||
N0 | 5.8 | 64.8 | 69.8 | 9.9 b | 46.3 | 69.8 |
N1 | 6.4 | 66.1 | 70.2 | 10.0 b | 47.8 | 70.2 |
N2 | 7.2 | 63.5 | 71.1 | 10.8 ab | 48.2 | 70.2 |
N3 | 7.2 | 65.4 | 71.4 | 11.1 a | 51.0 | 70.3 |
N-rate effect | ns | ns | ns | *** | ns | ns |
Irrigation x N-rate effect | ns | ns | *** | ns | ns | ns |
Mean | 6.7 | 65.0 | 70.6 | 10.4 | 48.3 | 70.1 |
Season-S1: 2021–2022 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | NDVI | NDRE | NDRE2 | Clg | CLr | Clre | SCCCI | RE-Ratio | Simple-Ratio |
Irrigation | |||||||||
AWD | 0.73 | 0.12 | 0.018 | 3.01 | 6.04 | 0.28 | 0.16 | 5.39 | 4.39 |
C | 0.77 | 0.13 | 0.019 | 3.29 | 7.31 | 0.31 | 0.17 | 6.24 | 5.14 |
Irrigation effect | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Nitrogen rate | |||||||||
N0 | 0.69 b | 0.09 b | 0.010 b | 2.28 b | 4.41 b | 0.18 b | 0.12 b | 4.57 b | 5.41 b |
N1 | 0.69 b | 0.10 b | 0.010 b | 2.45 b | 4.79 b | 0.22 b | 0.14 b | 4.75 b | 5.79 b |
N2 | 0.80 a | 0.15 a | 0.023 ab | 3.68 a | 8.16 a | 0.35 a | 0.19 a | 6.75 a | 9.16 a |
N3 | 0.82 a | 0.18 a | 0.030 a | 4.20 a | 9.35 a | 0.43 a | 0.22 a | 7.20 a | 10.35 a |
N-rate effect | *** | *** | ** | *** | *** | ** | *** | *** | *** |
Irrigation × N-rate effect | *** | ns | ns | ns | ns | *** | ns | ** | ** |
Mean | 0.75 | 0.13 | 0.018 | 3.15 | 6.68 | 0.29 | 0.17 | 5.82 | 7.67 |
Season-S2: 2022–2023 | |||||||||
Treatments | NDVI | NDRE | NDRE2 | Clg | CLr | Clre | SCCCI | RE-ratio | Simple-ratio |
Irrigation | |||||||||
AWD | 0.62 | 0.1 | 0.011 | 1.99 | 3.39 | 0.22 | 0.16 | 3.56 | 4.39 |
C | 0.66 | 0.12 | 0.015 | 2.32 | 4.14 | 0.27 | 0.18 | 3.98 | 5.14 |
Irrigation effect | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Nitrogen rate | |||||||||
N0 | 0.55 c | 0.07 b | 0.006 b | 1.55 b | 2.48 c | 0.16 b | 0.13 b | 3.00 c | 3.48 c |
N1 | 0.61 b | 0.09 b | 0.009 b | 1.91 b | 3.22 bc | 0.21 b | 0.15 b | 3.48 bc | 4.22 bc |
N2 | 0.68 a | 0.13 a | 0.017 a | 2.46 a | 4.32 ab | 0.29 a | 0.19 a | 4.08 ab | 5.32 ab |
N3 | 0.72 a | 0.14 a | 0.021 a | 2.71 a | 5.03 a | 0.33 a | 0.20 a | 4.53 a | 6.03 a |
N-rate effect | *** | *** | *** | *** | *** | ** | *** | *** | *** |
Irrigation × N-rate effect | *** | ** | * | *** | *** | *** | * | ** | ** |
Mean | 0.64 | 0.11 | 0.013 | 2.16 | 3.76 | 0.25 | 0.17 | 3.77 | 4.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carracelas, G.; Ballester, C.; Marchesi, C.; Roel, A.; Hornbuckle, J. Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy 2024, 14, 2976. https://doi.org/10.3390/agronomy14122976
Carracelas G, Ballester C, Marchesi C, Roel A, Hornbuckle J. Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy. 2024; 14(12):2976. https://doi.org/10.3390/agronomy14122976
Chicago/Turabian StyleCarracelas, Gonzalo, Carlos Ballester, Claudia Marchesi, Alvaro Roel, and John Hornbuckle. 2024. "Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques" Agronomy 14, no. 12: 2976. https://doi.org/10.3390/agronomy14122976
APA StyleCarracelas, G., Ballester, C., Marchesi, C., Roel, A., & Hornbuckle, J. (2024). Assessing Drone-Based Remote Sensing Indices for Monitoring Rice Nitrogen Plant Status Under Different Irrigation Techniques. Agronomy, 14(12), 2976. https://doi.org/10.3390/agronomy14122976