Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ionomic Analysis
2.3. Determination of the Physico-Chemical Parameters
2.4. Biocomponents Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Crop Yield and Agronomic Efficiency
3.2. Macro- and Micronutrients Concentrations
3.3. Fruit Physico-Chemical Parameters
3.4. Fruit Biocomponents Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Available online: https://www.mapa.gob.es/es/ (accessed on 10 March 2021).
- Conesa, C.; Laguarda-Miró, N.; Fito, P.; Seguí, L. Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) industrial residue as a source for value added products. Waste Biomass Valorization 2020, 11, 3749–3760. [Google Scholar] [CrossRef]
- Suciu, N.A.; Ferrari, F.; Trevisan, M. Organic and conventional food: Comparison and future research. Trends Food Sci. Technol. 2019, 84, 49–51. [Google Scholar] [CrossRef]
- CAECV. Informe del Sector Ecológico de la Comunitat Valenciana; Comité de Agricultura Ecológica de la Comunitat Valenciana: Generalitat Valenciana, Spain, 2021. [Google Scholar]
- Kumar, R.; Saurabh, K.; Kumawat, N.; Sundaram, P.K.; Mishra, J.S.; Singh, D.K.; Hans, H.; Krishna, B.; Bhatt, B.P. Sustaining productivity through integrated use of microbes in agriculture. In Role of Microbial Communities for Sustainability; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–145. [Google Scholar]
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Davis, D.R.; Delate, K. Organic farming, soil health, and food quality: Considering possible links. Adv. Agron. 2016, 137, 319–367. [Google Scholar]
- Faller, A.L.K.; Fialho, E.F.N.U. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 2010, 23, 561–568. [Google Scholar] [CrossRef]
- Bernacchia, R.; Preti, R.; Vinci, G. Organic and conventional foods: Differences in nutrients. Ital. J. Food Sci. 2016, 28, 565. [Google Scholar]
- Bordeleau, G.; Myers-Smith, I.; Midak, M.; Szeremeta, A. Food Quality: A Comparison of Organic and Conventional Fruits and Vegetables. Ph.D. Thesis, Department of Ecological Agriculture, Kongelige Veterinoer-og Landbohøjskole, Frederiksberg, Denmark, 2002. [Google Scholar]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef]
- Cardoso, P.C.; Cândido, F.G.; Cardoso, L.M.; Costa, N.M.; Martino, H.S.; Pinheiro-Sant’Ana, H.M. Comparison of mineral and trace element contents between organically and conventionally grown fruit. Fruits 2015, 70, 29–36. [Google Scholar] [CrossRef]
- Vilhena, N.Q.; Quinones, A.; Rodríguez, I.; Gil, R.; Fernández-Serrano, P.; Salvador, A. Leaf and fruit nutrient concentration in Rojo Brillante persimmon grown under conventional and organic management, and its correlation with fruit quality parameters. Agronomy 2022, 12, 237. [Google Scholar] [CrossRef]
- Keller, J.; Karmeli, D. Trickle irrigation design parameters. Trans. ASAE 1974, 17, 678–0684. [Google Scholar] [CrossRef]
- Doorenbos, J. Crop water requirements. FAO Irrig. Drain. Pap. 1977, 24, 1–144. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Castel, J.R.; Buj, A.C. Growth and evapotranspiration of young drip-irrigated clementine trees. In Proceedings of the 7th International Citrus Congress, Acireale, Italy, 8–13 March 1992; pp. 651–656. [Google Scholar]
- Jiménez-Cuesta, M.; Cuquerella, J.; Martinez-Javaga, J.M. Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture/International Citrus Congress; Shimizu, Japan, 9–12 November 1981, pp. 1982–1983.
- Sugiura, A.; Kataoka, I.; Tomana, T. Use of refractometer to determine soluble solids of astringent fruits of Japanese persimmon (Diospyros kaki L.). J. Hortic. Sci. 1983, 58, 241–246. [Google Scholar] [CrossRef]
- Bermejo, A.; Pardo, J.; Morales, J.; Cano, A. Comparative study of bioactive components and quality from juices of different mandarins: Discriminant multivariate analysis of their primary and secondary metabolites. Agric. Sci. 2016, 7, 341–351. [Google Scholar] [CrossRef]
- Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M.Á.; Salvador, A. Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’ and ‘Tarocco Rosso’ grown in Spain. Food Chem. 2021, 342, 128305. [Google Scholar] [CrossRef] [PubMed]
- Novillo, P.; Besada, C.; Tian, L.; Bermejo, A.; Salvador, A. Nutritional composition of ten persimmon cultivars in the “ready-to-eat crisp” stage. Eff. Deastringency Treat. Food Nutr. Sci. 2015, 6, 1296. [Google Scholar]
- González, C.M.; García, A.L.; Llorca, E.; Hernando, I.; Atienzar, P.; Bermejo, A.; Moraga, G.; Quiles, A. Carotenoids in dehydrated persimmon: Antioxidant activity, structure, and photoluminescence. LWT 2021, 142, 111007. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 2020, 10, 2. [Google Scholar] [CrossRef]
- Seufert, V. Comparing yields: Organic versus conventional agriculture. In Encyclopedia of Food Security and Sustainability; Volume 3: Sustainable Food Systems and Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 196–208. [Google Scholar]
- Lin, H.C.; Huber, J.A.; Gerl, G.; Hülsbergen, K.J. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr. Cycl. Agroecosystems 2016, 105, 1–23. [Google Scholar] [CrossRef]
- Morales, J.; Rodríguez-Carretero, I.; Martínez-Alcántara, B.; Canet, R.; Quiñones, A. DRIS Norms and Sufficiency Ranges for Persimmon ‘Rojo Brillante’ Grown under Mediterranean Conditions in Spain. Agronomy 2022, 12, 1269. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Karthika, K.S.; Rashmi, I.; Parvathi, M.S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–49. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Verma, G. Agronomic strategies for improving micronutrient use efficiency in crops for nutritional and food security. In Input Use Efficiency for Food and Environmental Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–156. [Google Scholar]
- Choi, S.T.; Ahn, G.H.; Lee, Y.C.; Kang, S.M. Effect of different autumnal nitrogen application dates on fruit characteristics and storage reserves of ‘Fuyu’ persimmon. Hort. Environ. Biotechnol. 2008, 49, 25–29. [Google Scholar]
- George, A.P.; Mowat, A.D.; Collins, R.J.; Morley-Bunker, M. The pattern and control of reproductive development in non-astringent persimmon (Diospyros kaki L.): A review. Sci Hortic 1997, 70, 93–122. [Google Scholar] [CrossRef]
- Agustí, M.; Juan, M.; Martínez-Fuentes, A.; Mesejo, C.; Almela, V. Calcium nitrate delays climacteric of persimmon fruit. Ann. Appl. Biol. 2004, 144, 65–69. [Google Scholar] [CrossRef]
- Choi, S.T.; Park, D.S.; Kang, S.M.; Kang, S.K. Influence of leaf-fruit ratio and nitrogen rate on fruit characteristics, nitrogenous compounds, and nonstructural carbohydrates in young persimmon trees. HortScience 2012, 47, 410–413. [Google Scholar] [CrossRef]
- Park, S.J. Effect of irrigation and N levels on fruit quality and nutrient distribution in ‘Fuyu’ persimmon tree parts during the final stages of fruit growth. J. Kor. Soc. Hortic. Sci. 2002, 43, 321–325. [Google Scholar]
- Salvador, A.; Arnal, L.; Besada, C.; Larrea, V.; Quiles, A.; Pérez-Munuera, I. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Technol. 2007, 46, 181–188. [Google Scholar] [CrossRef]
- Tessmer, M.A.; Besada, C.; Hernando, I.; Appezzato-da-Glória, B.; Quiles, A.; Salvador, A. Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biol. Technol. 2016, 120, 52–60. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef]
- Liu, M.; Wang, R.; Sun, W.; Han, W.; Li, G.; Zong, W.; Fu, J. Effects of postharvest calcium treatmenton the firmness of persimmon (Diospyros kaki) fruit based on a decline in WSP. Sci. Hortic. 2023, 307, 111490. [Google Scholar] [CrossRef]
- Ziogas, V.; Michailidis, M.; Karagiannis, E.; Tanou, G.; Molassiotis, A. Manipulating fruit quality through foliar nutrition. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 401–417. [Google Scholar]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Mele, M.A.; Lee, Y.T.; Islam, M.Z. Consumer preference, quality, and safety of organic and conventional fresh fruits, vegetables, and cereals. Foods 2021, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramırez-Rodrıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- Yaqub, S.; Farooq, U.; Shafi, A.; Akram, K.; Murtaza, M.A.; Kausar, T.; Siddique, F. Chemistry and functionality of bioactive compounds present in persimmon. J. Chem. 2016, 2016, 3424025. [Google Scholar] [CrossRef]
- Navarro, P.; Perez-Lopez, A.J.; Mercader, M.T.; Carbonell-Barrachina, A.A.; Gabaldon, J.A. Antioxidant activity, color, carotenoids composition, minerals, vitamin C and sensory quality of organic and conventional mandarin juice, cv. Orogrande. Food Sci. Technol. Int. 2011, 17, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Cheng, N.; Zhou, J.; Wang, B.; Deng, J.; Cao, W. Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. J. Food Sci. Technol. 2014, 51, 950–956. [Google Scholar] [CrossRef]
- Paoletti, F. Chemical composition of organic food products. In Handbook of Food Chemistry; Springer: Heidelberg, Germany, 2015; pp. 555–584. [Google Scholar]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
Parameter | Conventional Orchards | Organic Orchards |
---|---|---|
Sand (%) | 28.1 | 22.4 |
Silt (%) | 37.1 | 54.9 |
Clay (%) | 34.8 | 22.7 |
USDA Classification | Clay loam | Silty loam |
pH | 8.4 | 7.6 |
OM (%) | 0.94 | 3.14 |
Norg (%) | 0.05 | 0.14 |
C/N | 11.47 | 13.05 |
Soluble POlsen 1 (ppm) | 15.2 | 18.0 |
Casse 2 (meq/L) | 6.81 | 7.43 |
Mgsse 2 (meq/L) | 2.89 | 2.43 |
Ksse 2 (meq/L) | 0.31 | 0.35 |
Management | Season | Chemical Compound | |||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | Ca | Fe | Mn | Zn | B | ||
kg year−1 ha−1 | mg year−1 ha−1 | ||||||||
Conventional | 1 | 170 | 74 | 155 | 0.3 | 2190 | 1535 | 1093 | 120 |
2 | 167 | 62 | 113 | 3.6 | 720 | 1650 | 650 | 120 | |
Organic | 1 | 27 | 1 | 27 | 0.7 | 150 | 120 | 420 | 0 |
2 | 20 | 1 | 27 | 0.0 | 150 | 31 | 332 | 0 |
Season | Yield (kg)/ha | |
---|---|---|
Conventional | Organic | |
1 | 44,452 a | 33,418 b |
2 | 44,174 a | 23,914 c |
Management | Season | N | P2O5 | K2O |
---|---|---|---|---|
Conventional | 1 | 261 b | 600 d | 286 d |
2 | 264 b | 712 c | 391 c | |
Organic | 1 | 1237 a | 33,418 a | 1238 a |
2 | 1195 a | 23,914 b | 886 b |
N (%) | P (%) | K (%) | Ca (%) | Mg (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Leaves | |||||||||
Management (M) | |||||||||
Conventional | - | 0.14 | 1.27 | 3.77 | 0.87 | ||||
Organic | - | ||||||||
Season (S) | |||||||||
1 | - | 0.14 | 1.27 | 4.21 a | 0.87 | ||||
2 | - | 3.33 b | |||||||
M × S | CV | OR | - | - | - | - | |||
S1 | 1.52 a | 1.48 a | |||||||
S2 | 1.52 a | 1.32 b | |||||||
Significance | |||||||||
M | ** | NS | NS | NS | NS | ||||
S | * | NS | NS | *** | NS | ||||
M × S | * | NS | NS | NS | NS | ||||
Fruits | |||||||||
Management (M) | |||||||||
Conventional | - | 0.08 | 0.90 | - | 0.04 | ||||
Organic | - | - | |||||||
Season (S) | |||||||||
1 | - | 0.08 | 0.90 | - | 0.04 | ||||
2 | - | - | |||||||
M × S | CV | OR | - | - | CV | OR | - | ||
S1 | 0.39 a | 0.42 a | S1 | 0.05 a | 0.03 b | ||||
S2 | 0.39 a | 0.31 b | S2 | 0.03 b | 0.03 b | ||||
Significance | |||||||||
M | * | NS | NS | * | NS | ||||
S | *** | NS | NS | NS | NS | ||||
M × S | ** | NS | NS | * | NS |
Fe (ppm) | Mn (ppm) | Zn (ppm) | B (ppm) | |||
---|---|---|---|---|---|---|
Leaves | ||||||
Management (M) | ||||||
Conventional | 55.97 | 271.09 b | - | 53.87 | ||
Organic | 340.46 a | - | ||||
Season (S) | ||||||
1 | 67.88 a | 305.78 | - | 53.87 | ||
2 | 44.06 b | - | ||||
M × S | - | - | CV | OR | - | |
S1 | 9.69 c | 58.6 a | ||||
S2 | 11.46 c | 47.58 b | ||||
Significance | ||||||
M | NS | ** | *** | NS | ||
S | *** | NS | NS | NS | ||
M × S | NS | NS | ** | NS | ||
Fruits | ||||||
Management (M) | ||||||
Conventional | 4.64 | 5.10 | 3.50 b | 15.17 | ||
Organic | 5.08 a | |||||
Season (S) | ||||||
1 | 4.64 | 5.10 | 5.05 a | 11.74 b | ||
2 | 3.53 b | 18.60 a | ||||
M × S | - | - | - | - | ||
Significance | ||||||
M | NS | NS | ** | NS | ||
S | NS | NS | ** | * | ||
M × S | NS | NS | NS | NS |
Weight (g) | CI | Firmness (N) | TSS (°Brix) | ||
---|---|---|---|---|---|
Management | Conventional | 216.94 | 0.54 b | 51.92 a | 15.05 |
Organic | 0.85 a | 47.31 b | |||
Season | 1 | 250.05 a | 0.42 b | 52.42 a | 15.05 |
2 | 183.83 b | 0.96 a | 46.80 b | ||
Significance | Management (M) | NS | ** | *** | NS |
Season (S) | *** | *** | *** | *** | |
M × S | NS | NS | NS | NS |
Group | Compound | Management | |
---|---|---|---|
Conventional | Organic | ||
Organic acids (mg 100 g−1) | Malic | 177.5 b | 239.1 a |
Citric | 164.8 a | 161.7 a | |
Succinic | 97.4 a | 87.5 a | |
Fumaric | 8.3 a | 8.0 a | |
Individual sugars (g kg−1) | Sucrose | 99.8 a | 100.2 a |
Glucose | 31.0 a | 37.3 a | |
Fructose | 22.3 a | 27.9 a | |
Carotenoids (µg 100 g−1) | β-carotene | 91.0 a | 115.0 a |
β-cryptoxanthin | 373.6 b | 581.3 a | |
Violaxanthin | 0.6 a | 0.6 a | |
Lutein | 4.2 a | 4.7 a | |
Zeaxanthin | 37.1 a | 43.5 a | |
Phenolics (mg 100 g−1) | Gallic | 2.2 a | 2.2 a |
p-coumaric | 0.32 a | 0.34 a | |
Ascorbic acid (mg 100 g−1) | 8.5 b | 10.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhena, N.Q.; Salvador, A.; Morales, J.; Bermejo, A.; Quiñones, A. Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy 2024, 14, 113. https://doi.org/10.3390/agronomy14010113
Vilhena NQ, Salvador A, Morales J, Bermejo A, Quiñones A. Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy. 2024; 14(1):113. https://doi.org/10.3390/agronomy14010113
Chicago/Turabian StyleVilhena, Nariane Q., Alejandra Salvador, Julia Morales, Almudena Bermejo, and Ana Quiñones. 2024. "Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon" Agronomy 14, no. 1: 113. https://doi.org/10.3390/agronomy14010113
APA StyleVilhena, N. Q., Salvador, A., Morales, J., Bermejo, A., & Quiñones, A. (2024). Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy, 14(1), 113. https://doi.org/10.3390/agronomy14010113