Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Prevailing Weather Conditions
2.2. Soil Characteristics
2.3. Treatment Details
2.4. Enterprise Management
2.5. Observations Recording
2.5.1. System Equivalent Productivity
2.5.2. System Economics
2.5.3. Sustainable Livelihood Index
2.5.4. Energetics under Different Crops/IFS Based System
2.5.5. Total Water-Use: Crops vis-à-vis Other Enterprises
2.5.6. Global Warming Potential (GWP)
3. Results
3.1. Agronomic Productivity of Cropping System Module
3.2. Economics, Employment and Livelihood of Cropping Systems
3.3. Agri-Horti System Module: Agronomic Productivity and Production Efficiency
3.4. Productivity, Economics, Livelihood, and Employment Generation of IFS Modules
3.5. Energetics under IFS Model
3.6. Global Warming Potential
3.7. Water Budgeting and Environmental Implications
3.8. Nutrient Recycling from Different Wastes in IFS
4. Discussion
4.1. Agronomic Productivity of Cropping System Module
4.2. Economics, Employment and Livelihood of Cropping Systems
4.3. System Productivity and Production Efficiency
4.4. Energetics under IFS Model
4.5. Global Warming Potential, Environmental Implications and Water Budgeting
4.6. Nutrient Recycling from Different Wastes in IFS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’amato, D.; Korhonen, J. Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecol. Econ. 2021, 188, 107143. [Google Scholar] [CrossRef]
- Lu, Z.; Broesicke, O.A.; Chang, M.E.; Yan, J.; Xu, M.; Derrible, S.; Mihelcic, J.R.; Schwegler, B.; Crittenden, J.C. Seven approaches to manage complex coupled human and natural systems: A sustainability toolbox. Environ. Sci. Technol. 2019, 53, 9341–9351. [Google Scholar] [CrossRef] [PubMed]
- Mihelcic, J.R.; Crittenden, J.C.; Small, M.J.; Shonnard, D.R.; Hokanson, D.R.; Zhang, Q.; Chen, H.; Sorby, S.A.; James, V.U.; Sutherland, J.W.; et al. Sustainability science and engineering: The emergence of a new Meta discipline. Environ. Sci. Technol. 2003, 37, 5314. [Google Scholar] [CrossRef] [PubMed]
- Broman, G.I.; Robert, K.H. A framework for strategic sustainable development. J. Clean. Prod. 2017, 140, 17–31. [Google Scholar] [CrossRef]
- Lal, R. Integrating Animal Husbandry with Crops and Trees. Front. Sustain. Food Syst. 2020, 4, 00113. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; KaisaKorhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Arizpe, N.; Giampietro, M.; Ramos-Martin, J. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Crit. Rev. Plant. Sci. 2011, 30, 45–63. [Google Scholar] [CrossRef]
- Moraine, M.; Duru, M.; Therond, O. A social-ecological framework for analyzing and designing integrated crop–livestock systems from farm to territory levels. Renew. Agric. Food. Syst. 2016, 1, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.S.; Shekhawat, K.; Dass, A.; Premi, O.P.; Rathore, B.S.; Singh, V.K. Deficit Irrigation Scheduling and Super absorbent Polymer hydrogel Enhance Seed Yield, Water Productivity and Economics of Indian Mustard Under Semi-Arid Ecologies. Irrig. Drain. 2019, 68, 531–541. [Google Scholar] [CrossRef]
- Rathore, S.S.; Bhatt, B.P. Productivity improvement in jhum fields through integrated farming system. Indian J. Agron. 2008, 53, 167–171. [Google Scholar]
- Kumar, S.; Kumar, R.; Dey, A. Energy budgeting of crop-livestock-poultry integrated farming system in irrigated ecologies of eastern India. Indian J. Agric. Sci. 2019, 89, 1017–1022. [Google Scholar] [CrossRef]
- Therond, O.; Duru, M.; Roger-Estrade, J. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 2017, 37, 21. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Rathore, S.S.; Mishra, J.S.; Bhatt, B.P. Recommended best management practices for potential ecosystem services. Indian J. Agron. 2021, 66, 180–190. [Google Scholar]
- Duru, M.; Therond, O.; Fares, M. Designing agroecological transitions; a review. Agron. Sustain. Dev. 2015, 35, 1237–1257. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, C.J. Hydrometer method improved for making particle size analysis of soil. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Vittal, K.P.R.; MaruthiSankar, G.R.; Singh, H.P.; Samra, J.S. Sustainability of practices of dryland agriculture: Methodology and assessment. In All India Coordinated Research Project for Dryland Agriculture; Central Research Institute for Dryland Agriculture, Indian Council of Agricultural Research: Hyderabad, India, 2002; pp. 3–4. [Google Scholar]
- Mittal, J.P.; Dhawan, K.C. Research Manual on Energy Requirements in Agricultural Sector; ICAR: New Delhi, India, 1998. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 1988; pp. 20–23. [Google Scholar]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration carbon emissions and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Condor-Golec, R.D.; Salvatore, M.; Piersante, A.; Federici, S.; Ferrara, A.; Rossi, S.; Flammini, A.; Cardenas, P.; Biancalani, R.; et al. Estimating Greenhouse Gas Emissions in Agriculture: A Manual to Address Data Requirements for Developing Countries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midglev, P.M. (Eds.) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In IPCC Climate Change: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 710–716. [Google Scholar]
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; p. 151. ISBN 978-92-5-109551-5. [Google Scholar]
- FAO. Food and Agriculture Organization (FAO); FAO: Rome, Italy, 2022. [Google Scholar]
- Djokoto, J.G.; Afari-Sefa, V.; Addo-Quaye, A. Vegetable diversification in cocoa-based farming systems Ghana. Agric. Food Secur. 2017, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.S.; Babu, S.; Shekhawat, K.; Singh, R.; Yadav, S.K.; Singh, V.K.; Singh, C. Designing energy cum carbon-efficient environmentally clean production system for achieving green economy in agriculture. Sustain. Energy Technol. Assess. 2022, 52, 102190. [Google Scholar] [CrossRef]
- Khanam, R.; Debarati, B.; Nayak, A.K. Crop diversification: An important way-out for doubling farmers’ income. Indian Farming 2018, 68, 31–32. [Google Scholar]
- Singh, R.; Babu, S.; Avasthe, R.K.; Yadav, G.S. Crop Diversification and Intensification for Enhancing Livelihood Security in Sikkim; ICAR-National Organic Farming Research Institute: Gangtok, India, 2018; 36p. [Google Scholar]
- Feliciano, D. A review on the contribution of crop diversification to Sustainable Development Goal 1 “No poverty” in different world regions. J. Sustain. Dev. 2019, 27, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Kurdyś-Kujawska, A.; Strzelecka, A.; Zawadzka, D. The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland. Agriculture 2021, 11, 250. [Google Scholar] [CrossRef]
- Fortes, A.R.; Ferreira, V.; Simões, E.B.; Baptista, I.; Grando, S.; Sequeira, E. Food Systems and Food Security: The Role of Small Farms and Small Food Businesses in Santiago Island, Cabo Verde. Agriculture 2020, 10, 216. [Google Scholar] [CrossRef]
- Rivera, M.; Guarín, A.; Pinto-Correia, T.; Almaas, H.; Arnalte-Mur, L.; Burns, V.; Czekaj, M.; Ellis, R.; Galli, F.; Grivins, M. Assessing the role of small farms in regional food systems in Europe: Evidence from a comparative study. Glob. Food Secur. 2020, 26, 100417. [Google Scholar] [CrossRef]
- He, D.-C.; Ma, Y.-L.; Li, Z.-Z.; Zhong, C.-S.; Cheng, Z.-B.; Zhan, J. Crop Rotation Enhances Agricultural Sustainability: From an Empirical Evaluation of Eco-Economic Benefits in Rice Production. Agriculture 2021, 11, 91. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Eur. J. Agron. 2014, 57, 10–20. [Google Scholar] [CrossRef]
- Sanderson, M.; Archer, D.; Hendrickson, J.; Kronberg, S.; Liebig, M.; Nichols, K.; Aguilar, J. Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renew. Agric. Food Syst. 2013, 28, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, P.; Prusty, A.K.; Panwar, A.S.; Paramesh, V.; Natesan, R.; Shamim, M.; Verma, N.; Jat, P.C.; Singh, M.P. Achieving Food and Livelihood Security and Enhancing Profitability through an Integrated Farming System Approach: A Case Study from Western Plains of Uttar Pradesh, India. Sustainability 2022, 14, 6653. [Google Scholar] [CrossRef]
- Ravallion, M.; Datt, G. How important to India’s poor is the sectoral composition of economic growth? World Bank Econ. Rev. 1996, 10, 1–25. [Google Scholar] [CrossRef] [Green Version]
- De Janvry, A.; Sadoulet, E. Agricultural growth and poverty reduction: Additional evidence. World Bank Res. Obs. 2010, 25, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Birthal, P.S.; Roy, D.; Negi, D.S. Assessing the impact of crop diversification on farm poverty in India. World Dev. 2015, 72, 70–92. [Google Scholar] [CrossRef]
- Ali, M.; Abedullah, M. Economic and nutritional benefits from enhanced vegetable production and consumption in developing countries. J. Crop. Prod. 2002, 6, 145–176. [Google Scholar] [CrossRef]
- Barghouti, S.; Kane, S.; Sorby, K.; Ali, M. Agricultural Diversification for the Poor, ARD Discussion Paper 1; The World Bank: Washington, DC, USA, 2004. [Google Scholar]
- Joshi, P.K.; Gulati, A.; Birthal, P.S.; Tewari, L. Agricultural diversification in South Asia: Patterns, determinants and policy implications. Econ. Polit. Wkly. 2004, 39, 2457–2468. [Google Scholar]
- Weinberger, K.; Lumpkin, T.A. Diversification into horticulture and poverty reduction: A research agenda. World Dev. 2007, 35, 1464–1480. [Google Scholar] [CrossRef]
- Birthal, P.S.; Joshi, P.K.; Chauhan, S.; Singh, H. Can horticulture revitalize agricultural growth? Indian J. Agric. Econ. 2008, 63, 310–321. [Google Scholar]
- Jayne, T.S.; Yamano, T.; Webber, M.; Tschirley, D.; Benfia, R.; Neven, D. Smallholder income and land distribution in Africa: Implications for poverty reduction strategies. Food Policy 2003, 28, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Bigsten, A.; Tengstam, S. Smallholder diversification and income growth in Zambia. J. Afr. Econ. 2011, 20, 781–822. [Google Scholar] [CrossRef]
- Rathore, S.S.; Babu, S.; El-Sappah, A.H.; Shekhawat, K.; Singh, V.K.; Singh, R.K.; Upadhyay, P.K.; Singh, R. Integrated agroforestry systems improve soil carbon storage, water productivity, and economic returns in the marginal land of the semi-arid region. Saudi J. Biol. Sci. 2022, 29, 103427. [Google Scholar] [CrossRef] [PubMed]
- Grebner, D.L.; Bettinger, P.; Jacek, P.; Siry, J.; Boston, K. Chapter 11—Common forestry practices, Editor(s): Introduction to Forestry and Natural Resources, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 265–294. ISBN 9780128190029. [Google Scholar] [CrossRef]
- Xu, H.; Bi, H.; Gao, L.; Yun, L. Alley Cropping Increases Land Use Efficiency and Economic Profitability Across the Combination Cultivation Period. Agronomy 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Sida, T.S.; Baudron, F.; Hadgu, K.; Derero, A.; Giller, K.E. Crop vs. tree: Can agronomic management reduce trade-offs in tree-crop interactions. Agric. Ecosyst. Environ. 2018, 260, 36–46. [Google Scholar] [CrossRef]
- Garrity, D. Agroforestry and the future of global land use. In Agroforestry-The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; Volume 9, pp. 21–27. [Google Scholar]
- Wilson, M.H.; Lovell, S.T. Agroforestry—The next step in sustainable and resilient agriculture. Sustainability 2016, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Panwar, A.S.; Prusty, A.K.; Shamim, M.; Ravisankar, N.; Ansari, M.A.; Singh, R.; Modipuram, M. Nutrient recycling in integrated farming system for climate resilience and sustainable income. Indian J. Fertil. 2021, 17, 1126–1137. [Google Scholar]
- Birthal, P.S.; Joshi, P.K.; Roy, D.; Thorat, A. Diversification in Indian agriculture towards high-value crops: The role of smallholders. Can. J. Agric. Econ. Rev. Can. D’agroeconomie 2013, 61, 61–91. [Google Scholar] [CrossRef]
- Singh, V.K.; Rathore, S.S.; Singh, R.K.; Upadhyay, P.K.; Shekhawat, K. Integrated farming system approach for enhanced farm productivity, climate resilience and doubling farmers’ income. Indian J. Agric. Sci. 2020, 90, 1378–1388. [Google Scholar] [CrossRef]
- Ponnusamy, K.; Shukla, A.; Kishore, K. Studies on sustainable livelihood of farmers in horticulture-based farming systems. Indian J. Hortic. 2015, 72, 285–288. [Google Scholar] [CrossRef]
- Morais, T.G.; Tufik, C.; Rato, A.E.; Rodrigues, N.R.; Gama, I.; Jongen, M.; Serrano, J.; Fangueiro, D.; Domingos, T.; Teixeira, R.F. Estimating soil organic carbonof sown biodiverse permanent pasturesin Portugal using near infrared spectral data and artificial neutral networks. Geoderma 2021, 404, 115387. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Kandpal, B.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.; Mohapatra, K. The food-energy-water-carbon nexus in a maize-maize- mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Yrjälä, K.; Ramakrishnan, M.; Salo, E. Agricultural waste streams as a resource in the circular economy for biochar production towards carbon neutrality. Curr. Opin. Environ. Sci. Health 2022, 26, 100339. [Google Scholar] [CrossRef]
- Paramesh, V.; Parajuli, R.; Chakurkar, E.B.; Sreekanth, G.B.; Kumar, H.C.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Viswanatha, R.K.; Ravisankar, N. Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy 2019, 188, 116101. [Google Scholar] [CrossRef]
- Sulc, R.M.; Franzluebbers, A.J. Exploring integrated crop—Livestock systems in different ecoregions of the United States. Eur. J. Agron. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area. Energy 2016, 103, 543–556. [Google Scholar] [CrossRef]
- Amiri, Z.; Asgharipour, M.R.; Campbell, D.E.; Armin, M. A sustainability analysis of two rapeseed farming ecosystems in Khorramabad, Iran, based on energy and economic analyses. J. Clean. Prod. 2019, 226, 1051–1066. [Google Scholar] [CrossRef]
- Rahman, S.; Barmon, B.K. Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh. Energy 2012, 43, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Chand, R.; Joshi, P.; Khadka, S. Indian Agriculture Towards 2030: Pathways for Enhancing Farmers’ Income, Nutritional Security and Sustainable Food and Farm Systems. In India Studies in Business and Economics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; p. 197. ISBN 978-981-19-0762-3. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Behera, U.K.; France, J. Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138, pp. 235–282. [Google Scholar]
- Das, A.; Datta, D.; Samajdar, T.; Idapuganti, R.G.; Islam, M.; Choudhury, B.U.; Mohapatra, K.P.; Layek, J.; Babu, S.; Yadav, G.S. Livelihood security of smallholder farmers in eastern Himalayas, India: Pond based integrated farming system a sustainable approach. Curr. Res. Environ. Sustain. 2021, 3, 100076. [Google Scholar] [CrossRef]
- Lou, Z.; Sun, Y.; Bian, S.; Baig, S.A.; Hu, B.; Xu, X. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 2017, 169, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.L.; Abraham, S.; Bhagat, R.; Prakash, O. Comparative performance of integrated farming system models in Gariyaband region under rainfed and irrigated conditions. Ind. J. Agric. Res. 2017, 51, 64–68. [Google Scholar]
- Kumar, S.; Dey, A.; Kumar, U.; Kumar, R.; Mondal, S.; Kumar, A. Location-specific integrated farming system models for resource recycling and livelihood security for smallholders. Front. Agron. 2022, 4, 938331. [Google Scholar] [CrossRef]
Treatments | Field Crops | Agri–Horti System | Open Field Vegetable Production | Protected Vegetable Production | Mushroom Production | Beekeeping | Vermicomposting | |
---|---|---|---|---|---|---|---|---|
M1 | RWCS | ✔ | ||||||
M2 | MWCS | ✔ | ||||||
M3 | AHS | 0✔ | ||||||
M4 | VP | ✔ | ||||||
M5 | VP + PVC | ✔ | ✔ | |||||
M6 | VP + PVC + FC | ✔ | ✔ | ✔ | ||||
M7 | VP + PVC + FC + AHS | ✔ | ✔ | ✔ | ✔ | |||
M8 | VP + PVC + FC + AHS + M | ✔ | ✔ | ✔ | ✔ | ✔ | ||
M9 | VP + PVC + FC + AHS + M + BK | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
M10 | VP + PVC + FC + AHS + M + BK + VC | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Treatments/Modules | Field Crops | Open Field Vegetable Production | Protected Vegetable Production | Agri–Horti System | Mushroom Production | Beekeeping | Vermicomposting | Total Area | |
---|---|---|---|---|---|---|---|---|---|
M1 | RWCS | 10,000 | - | - | - | - | - | - | 10,000 |
M2 | MWCS | 10,000 | - | - | - | - | - | - | 10,000 |
M3 | AHS | - | - | - | 10,000 | - | - | - | 10,000 |
M4 | VP | - | 10,000 | - | - | - | - | - | 10,000 |
M5 | VP + PVC | - | 7778 | 2222 | - | - | - | - | 10,000 |
M6 | VP + PVC + FC | 1667 | 6111 | 2222 | - | - | - | - | 10,000 |
M7 | VP + PVC + FC + AHS | 1154 | 4231 | 1538 | 3077 | - | - | - | 10,000 |
M8 | VP + PVC + FC + AHS + MP | 1139 | 4177 | 1519 | 3038 | 127 | - | - | 10,000 |
M9 | VP + PVC + FC + AHS + MP + BK | 1139 | 4177 | 1519 | 3038 | 127 | * | - | 10,000 |
M10 | VP + PVC + FC + AHS + MP + BK + VC | 1125 | 4125 | 1500 | 3000 | 125 | * | 125 | 10,000 |
S N. | Crop | Crop Growing Period | Variety | Spacing (cm) | Seed Rate (kg/ha) | Fertilizer Schedule (N, P2O5 & K2O kg/ha) |
---|---|---|---|---|---|---|
1. | baby corn–mustard–baby corn | |||||
babycorn | July–October | G-5414 | 45 × 15 | 25 | 120:60:60 | |
mustard | November–March | PM-28 | 50 × 10 | 5 | 60:60:40 | |
babycorn | March–June | G-5414 | 45 × 15 | 25 | 120:60:60 | |
2. | maize–Onion | |||||
maize | June–October | PMH-1 | 60 × 15 | 20 | 120:60:40 | |
onion | November–March | Pusa Riddhi | 45 × 20 | 08 | 100:40:60 | |
3. | okra–cabbage + broccoli + cauliflower–cowpea | |||||
okra | June–October | Pusa A-4 | 50 × 50 | 15 | 100:50:60 | |
cabbage + broccoli + cauliflower | November–February | Pusa Ageti, Pusa Aghani, Pusa Broccoli KTS 1 | 45 × 30 | 0.5 | 120:60:60 | |
45 × 30 | 0.5 | 120:60:60 | ||||
45 × 30 | 0.5 | 120:60:60 | ||||
cowpea | June–September | Pusa Sukomal | 45 × 10 | 25 | 20:60:40 | |
4. | bottle gourd-early vegetable pea-late wheat | |||||
bottle gourd | May–September | Amrit F1-Hybrid | 250 × 100 | 5 | 200:100:100 | |
Early Vegetable pea | October–December | Pusa Pragati | 40 × 10 | 75 | 20:60:40 | |
Late Wheat | December–April | HD3271 | 20 × 8 | 125 | 100:50:40 | |
5. | cowpea–marigold–vegetable rapeseed | |||||
cowpea | June–September | Pusa Sukomal | 45 × 10 | 25 | 20:60:40 | |
marigold | October–February | Pusa Narangi Pusa Basanti | 30 × 30 | 0.75 | 90:90:75 | |
Vegetable rapeseed | April–May | Pusa Sag-1 | 30 × 5 | 7–8 | 30:30:40 | |
6 | rice–wheat | |||||
rice | July–November | Pusa Basmati 1509 | 20 × 10 | 25 | 90:30:30 | |
wheat | November–April | HD-3226 | 20 × 10 | 120 | 120:60:60 | |
7 | maize–wheat | |||||
maize | June–October | PMH-1 | 60 × 15 | 20 | 120:60:40 | |
wheat | November–April | HD-3226 | 20 × 10 | 120 | 120:60:60 |
Cropping System | Agronomic Productivity of Crops | Maize Equivalent Yield | SMEP | PE | ||||
---|---|---|---|---|---|---|---|---|
Rainy Season | Winter | Summer | Rainy Season | Winter | Summer | |||
Rice–wheat | 4356 | 4867 | - | 8189 | 5222 | - | 13,411 | 36.7 |
Maize–wheat | 5844 | 5289 | - | 5844 | 5678 | - | 11,522 | 31.6 |
baby corn–mustard–baby corn | 7100 | 1567 | 7478 | 7633 | 4089 | 8044 | 19,767 | 54.2 |
Maize–onion | 5900 | 14,856 | - | 5900 | 23,944 | 0 | 29,844 | 81.8 |
Okra–cabbage + brocali + cauliflower–cowpea | 8156 | 16,011 | 7856 | 11,978 | 17,211 | 8456 | 37,644 | 103.1 |
Bottle gourd–pea-–wheat | 13,611 | 8189 | 3278 | 14,622 | 13,211 | 3522 | 31,356 | 85.9 |
Cowpea–marigold–veg mustard | 7967 | 9167 | 13,150 | 8567 | 14,783 | 14,133 | 37,483 | 102.7 |
SEm± | - | - | - | - | - | - | 1813 | 4.93 |
LSD (p = 0.05) | - | - | - | - | - | - | 5650 | 15.4 |
Cropping System. | SNR (USD/ha) | B:C | System Profitability (USD/ha/day) | System Livelihood Index | Employment Generation |
---|---|---|---|---|---|
Rice–wheat | 1451 | 1.85 | 3.97 | −13.6 | 187 |
Maize–wheat | 1147 | 1.73 | 3.14 | −21.1 | 162 |
Baby corn–mustard–baby corn | 2519 | 2.18 | 6.90 | 13.0 | 141 |
Maize–onion | 4963 | 3.4 | 13.59 | 73.7 | 218 |
Okra–cole crops–cowpea | 6326 | 3.49 | 17.33 | 107.5 | 282 |
Bottle gourd–early pea-wheat | 4983 | 3.07 | 13.65 | 74.2 | 194 |
Cowpea–marigold–veg mustard | 6789 | 4.33 | 18.59 | 119.0 | 140 |
SEm (±) | 299.7 | 0.197 | 0.82 | - | 11.9 |
LSD (p = 0.05) | 933.6 | 0.614 | 2.56 | - | 37.0 |
Vegetables under Agri-Horti System | Fruit | 2020–2021 | 2021–2022 | SMEY (Pooled) | PE |
---|---|---|---|---|---|
Okra–Cauliflower–Vegetable Cowpea | Guava | 31,500 | 31,590 | 31,544 | 86.4 |
Spinach–Garlic–Lettuce | Pomegranate | 46,740 | 46,550 | 46,644 | 127.8 |
Sponge gourd–Radish–Lettuce | Pomegranate | 56,390 | 52,620 | 54,504 | 149.3 |
Coriander–Vegetable Mustard–Tomato | Guava | 43,500 | 44,410 | 43,954 | 120.4 |
Spinach–Cauliflower–Coriander | Kinnow | 42,940 | 48,730 | 45,834 | 125.6 |
Chilli–Brinjal | Karonda | 30,110 | 33,800 | 31,951 | 87.5 |
Bitter gourd–Potato | Aonla | 23,010 | 21,050 | 25,027 | 60.3 |
Safflower–Fenugreek | Phalsa | 6800 | 8170 | 7485 | 20.5 |
Onion–Fenugreek | Phalsa | 25,950 | 24,810 | 23,380 | 69.5 |
SEm± | 2280 | 2210 | 2300 | 6.2 | |
LSD (p = 0.05) | 6890 | 7020 | 6953 | 18.8 |
Symbol | IFS Modules | System Maize Eqvalent Yield | Gross Returns (USD/ha) | Cost of Cultivation, USD/ha | Net Returns (USD/ha) | B:C | Profitability (USD/ha/day) | Sustainable Livelihood Index | Employment Generation |
---|---|---|---|---|---|---|---|---|---|
M1 | RWCS | 13,417 | 3159 | 1824 | 1335 | 1.73 | 3.7 | −15.6 | 187 |
M2 | MWCS | 11,518 | 2712 | 1673 | 1038 | 1.62 | 2.8 | −18.8 | 162 |
M3 | AHS | 34,192 | 8050 | 2592 | 5458 | 3.11 | 14.9 | 28 | 477 |
M4 | VP | 27,722 | 6528 | 1840 | 4688 | 3.55 | 12.8 | 19.9 | 468 |
M5 | VP + PVC | 54,534 | 12,838 | 6179 | 6658 | 2.08 | 18.2 | 40.7 | 620 |
M6 | VP + PVC + FC | 56,786 | 13,368 | 6488 | 6880 | 2.06 | 18.8 | 43.1 | 690 |
M7 | VP + PVC + FC + AHS | 49,840 | 11,733 | 5503 | 6231 | 2.13 | 17.1 | 36.2 | 625 |
M8 | VP + PVC + FC + AHS + MP | 73,925 | 17,405 | 8496 | 8908 | 2.05 | 24.4 | 64.5 | 756 |
M9 | VP + PVC + FC + AHS + MP + BK | 74,871 | 17,627 | 8620 | 9007 | 2.04 | 24.7 | 65.6 | 773 |
M10 | VP + PVC + FC + AHS + MP + BK + VC | 83,062 | 18,268 | 8822 | 9446 | 2.07 | 25.9 | 70.2 | 792 |
SEm (±) | 3230 | 745 | 0 | 394 | 0.14 | 1.1 | - | 35.5 | |
LSD (p = 0.05) | 9671 | 2230 | 0 | 1179 | 0.42 | 3.2 | - | 106.2 |
Symbol | IFS Modules | Energy Input (×103 MJ/ha) | Energy Output (×103 MJ/ha) | Net Energy (×103 MJ/ha) | Energy Productivity (kg/MJ) | Energy Intensity (MJ/US$) | Energy Profit |
---|---|---|---|---|---|---|---|
M1 | RWCS | 38.8 | 333.2 | 294.4 | 0.35 | 182.7 | 7.58 |
M2 | MWCS | 36.5 | 369.4 | 332.8 | 0.32 | 220.8 | 9.11 |
M3 | AHS | 37.2 | 192.6 | 155.4 | 0.92 | 74.3 | 4.18 |
M4 | VP | 36.4 | 447.2 | 410.8 | 0.76 | 190.9 | 11.29 |
M5 | VP + PVC | 40.0 | 520.9 | 480.9 | 1.36 | 72.2 | 12.03 |
M6 | VP + PVC + FC | 41.0 | 521.8 | 480.8 | 1.39 | 80.4 | 11.73 |
M7 | VP + PVC + FC + AHS | 39.8 | 420.5 | 380.6 | 1.25 | 76.4 | 9.56 |
M8 | VP + PVC + FC + AHS + MP | 54.0 | 420.8 | 366.7 | 1.37 | 49.5 | 6.78 |
M9 | VP + PVC + FC + AHS + MP + BK | 54.6 | 421.2 | 366.6 | 1.37 | 48.9 | 6.71 |
M10 | VP + PVC + FC + AHS + MP + BK + VC | 55.2 | 416.8 | 361.5 | 1.50 | 47.2 | 6.54 |
SEm (±) | 2.5 | 23.5 | 21.1 | 0.07 | 5.21 | 0.55 | |
LSD (p = 0.05) | 7.5 | 70.4 | 63.1 | 0.22 | 11.5 | 1.65 |
IFS Modules | Green House Gas (GHGs) Emission | Water Footprint | Nitrogen Addition through Farm Wastes (kg/ha) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Symbol | GWP (kg CO2 e) | GHGI (kg CO2 e/kg MEY) | Total Water Use, m3 | Water Productivity, kg/m3 | Water Footprint lit/kg Produce | Crop Residues | Mushroom Spent Compost | Vermicomposting | Total | |
M1 | RWCS | 2652 | 0.198 | 17,144 | 0.78 | 1277 | 38.8 | 0 | 0 | 38.8 |
M2 | MWCS | 2907 | 0.252 | 11,799 | 0.98 | 1024 | 42.3 | 0 | 0 | 42.3 |
M3 | AHS | 4580 | 0.134 | 15,895 | 2.15 | 465 | 38.2 | 0 | 0 | 38.2 |
M4 | VP | 2375 | 0.086 | 10,018 | 3.08 | 361 | 31.4 | 0 | 0 | 31.4 |
M5 | VP + PVC | 3817 | 0.070 | 9439 | 6.47 | 173 | 25.6 | 0 | 0 | 25.6 |
M6 | VP + PVC + FC | 4385 | 0.077 | 11,018 | 5.16 | 194 | 56.2 | 0 | 0 | 56.2 |
M7 | VP + PVC + FC + AHS | 4444 | 0.089 | 12,600 | 3.96 | 253 | 50.9 | 0 | 0 | 50.9 |
M8 | VP + PVC + FC + AHS + MP | 8163 | 0.110 | 12,477 | 5.93 | 169 | 38.8 | 55.3 | 0 | 94.1 |
M9 | VP + PVC + FC + AHS + MP + BK | 8177 | 0.109 | 12,477 | 6.00 | 167 | 38.8 | 55.3 | 0 | 94.2 |
M10 | VP + PVC + FC + AHS + MP + BK + VC | 8107 | 0.098 | 12,357 | 6.72 | 149 | 22.6 | 54.6 | 37.7 | 114.9 |
SEm (±) | 298 | 0.008 | 746 | 0.29 | 18.0 | - | - | - | 4.6 | |
LSD (p = 0.05) | 969 | 0.023 | 2231 | 0.85 | 53.9 | - | - | - | 13.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyam, C.S.; Shekhawat, K.; Rathore, S.S.; Babu, S.; Singh, R.K.; Upadhyay, P.K.; Dass, A.; Fatima, A.; Kumar, S.; Sanketh, G.D.; et al. Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India. Agronomy 2023, 13, 955. https://doi.org/10.3390/agronomy13040955
Shyam CS, Shekhawat K, Rathore SS, Babu S, Singh RK, Upadhyay PK, Dass A, Fatima A, Kumar S, Sanketh GD, et al. Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India. Agronomy. 2023; 13(4):955. https://doi.org/10.3390/agronomy13040955
Chicago/Turabian StyleShyam, C. S., Kapila Shekhawat, Sanjay Singh Rathore, Subhash Babu, Rajiv Kumar Singh, Pravin Kumar Upadhyay, Anchal Dass, Ayesha Fatima, Sandeep Kumar, G. D. Sanketh, and et al. 2023. "Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India" Agronomy 13, no. 4: 955. https://doi.org/10.3390/agronomy13040955
APA StyleShyam, C. S., Shekhawat, K., Rathore, S. S., Babu, S., Singh, R. K., Upadhyay, P. K., Dass, A., Fatima, A., Kumar, S., Sanketh, G. D., & Singh, V. K. (2023). Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India. Agronomy, 13(4), 955. https://doi.org/10.3390/agronomy13040955