Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ionomic Analysis
2.3. Determination of the Physico-Chemical Parameters
2.4. Biocomponents Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Crop Yield and Agronomic Efficiency
3.2. Macro- and Micronutrients Concentrations
3.3. Fruit Physico-Chemical Parameters
3.4. Fruit Biocomponents Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Available online: https://www.mapa.gob.es/es/ (accessed on 10 March 2021).
- Conesa, C.; Laguarda-Miró, N.; Fito, P.; Seguí, L. Evaluation of Persimmon (Diospyros kaki Thunb. cv. Rojo Brillante) industrial residue as a source for value added products. Waste Biomass Valorization 2020, 11, 3749–3760. [Google Scholar] [CrossRef]
- Suciu, N.A.; Ferrari, F.; Trevisan, M. Organic and conventional food: Comparison and future research. Trends Food Sci. Technol. 2019, 84, 49–51. [Google Scholar] [CrossRef]
- CAECV. Informe del Sector Ecológico de la Comunitat Valenciana; Comité de Agricultura Ecológica de la Comunitat Valenciana: Generalitat Valenciana, Spain, 2021. [Google Scholar]
- Kumar, R.; Saurabh, K.; Kumawat, N.; Sundaram, P.K.; Mishra, J.S.; Singh, D.K.; Hans, H.; Krishna, B.; Bhatt, B.P. Sustaining productivity through integrated use of microbes in agriculture. In Role of Microbial Communities for Sustainability; Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–145. [Google Scholar]
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Davis, D.R.; Delate, K. Organic farming, soil health, and food quality: Considering possible links. Adv. Agron. 2016, 137, 319–367. [Google Scholar]
- Faller, A.L.K.; Fialho, E.F.N.U. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 2010, 23, 561–568. [Google Scholar] [CrossRef]
- Bernacchia, R.; Preti, R.; Vinci, G. Organic and conventional foods: Differences in nutrients. Ital. J. Food Sci. 2016, 28, 565. [Google Scholar]
- Bordeleau, G.; Myers-Smith, I.; Midak, M.; Szeremeta, A. Food Quality: A Comparison of Organic and Conventional Fruits and Vegetables. Ph.D. Thesis, Department of Ecological Agriculture, Kongelige Veterinoer-og Landbohøjskole, Frederiksberg, Denmark, 2002. [Google Scholar]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.; Pinheiro-Sant’Ana, H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef]
- Cardoso, P.C.; Cândido, F.G.; Cardoso, L.M.; Costa, N.M.; Martino, H.S.; Pinheiro-Sant’Ana, H.M. Comparison of mineral and trace element contents between organically and conventionally grown fruit. Fruits 2015, 70, 29–36. [Google Scholar] [CrossRef]
- Vilhena, N.Q.; Quinones, A.; Rodríguez, I.; Gil, R.; Fernández-Serrano, P.; Salvador, A. Leaf and fruit nutrient concentration in Rojo Brillante persimmon grown under conventional and organic management, and its correlation with fruit quality parameters. Agronomy 2022, 12, 237. [Google Scholar] [CrossRef]
- Keller, J.; Karmeli, D. Trickle irrigation design parameters. Trans. ASAE 1974, 17, 678–0684. [Google Scholar] [CrossRef]
- Doorenbos, J. Crop water requirements. FAO Irrig. Drain. Pap. 1977, 24, 1–144. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Castel, J.R.; Buj, A.C. Growth and evapotranspiration of young drip-irrigated clementine trees. In Proceedings of the 7th International Citrus Congress, Acireale, Italy, 8–13 March 1992; pp. 651–656. [Google Scholar]
- Jiménez-Cuesta, M.; Cuquerella, J.; Martinez-Javaga, J.M. Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture/International Citrus Congress; Shimizu, Japan, 9–12 November 1981, pp. 1982–1983.
- Sugiura, A.; Kataoka, I.; Tomana, T. Use of refractometer to determine soluble solids of astringent fruits of Japanese persimmon (Diospyros kaki L.). J. Hortic. Sci. 1983, 58, 241–246. [Google Scholar] [CrossRef]
- Bermejo, A.; Pardo, J.; Morales, J.; Cano, A. Comparative study of bioactive components and quality from juices of different mandarins: Discriminant multivariate analysis of their primary and secondary metabolites. Agric. Sci. 2016, 7, 341–351. [Google Scholar] [CrossRef]
- Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M.Á.; Salvador, A. Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’ and ‘Tarocco Rosso’ grown in Spain. Food Chem. 2021, 342, 128305. [Google Scholar] [CrossRef] [PubMed]
- Novillo, P.; Besada, C.; Tian, L.; Bermejo, A.; Salvador, A. Nutritional composition of ten persimmon cultivars in the “ready-to-eat crisp” stage. Eff. Deastringency Treat. Food Nutr. Sci. 2015, 6, 1296. [Google Scholar]
- González, C.M.; García, A.L.; Llorca, E.; Hernando, I.; Atienzar, P.; Bermejo, A.; Moraga, G.; Quiles, A. Carotenoids in dehydrated persimmon: Antioxidant activity, structure, and photoluminescence. LWT 2021, 142, 111007. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 2020, 10, 2. [Google Scholar] [CrossRef]
- Seufert, V. Comparing yields: Organic versus conventional agriculture. In Encyclopedia of Food Security and Sustainability; Volume 3: Sustainable Food Systems and Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 196–208. [Google Scholar]
- Lin, H.C.; Huber, J.A.; Gerl, G.; Hülsbergen, K.J. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr. Cycl. Agroecosystems 2016, 105, 1–23. [Google Scholar] [CrossRef]
- Morales, J.; Rodríguez-Carretero, I.; Martínez-Alcántara, B.; Canet, R.; Quiñones, A. DRIS Norms and Sufficiency Ranges for Persimmon ‘Rojo Brillante’ Grown under Mediterranean Conditions in Spain. Agronomy 2022, 12, 1269. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Karthika, K.S.; Rashmi, I.; Parvathi, M.S. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–49. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Verma, G. Agronomic strategies for improving micronutrient use efficiency in crops for nutritional and food security. In Input Use Efficiency for Food and Environmental Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–156. [Google Scholar]
- Choi, S.T.; Ahn, G.H.; Lee, Y.C.; Kang, S.M. Effect of different autumnal nitrogen application dates on fruit characteristics and storage reserves of ‘Fuyu’ persimmon. Hort. Environ. Biotechnol. 2008, 49, 25–29. [Google Scholar]
- George, A.P.; Mowat, A.D.; Collins, R.J.; Morley-Bunker, M. The pattern and control of reproductive development in non-astringent persimmon (Diospyros kaki L.): A review. Sci Hortic 1997, 70, 93–122. [Google Scholar] [CrossRef]
- Agustí, M.; Juan, M.; Martínez-Fuentes, A.; Mesejo, C.; Almela, V. Calcium nitrate delays climacteric of persimmon fruit. Ann. Appl. Biol. 2004, 144, 65–69. [Google Scholar] [CrossRef]
- Choi, S.T.; Park, D.S.; Kang, S.M.; Kang, S.K. Influence of leaf-fruit ratio and nitrogen rate on fruit characteristics, nitrogenous compounds, and nonstructural carbohydrates in young persimmon trees. HortScience 2012, 47, 410–413. [Google Scholar] [CrossRef]
- Park, S.J. Effect of irrigation and N levels on fruit quality and nutrient distribution in ‘Fuyu’ persimmon tree parts during the final stages of fruit growth. J. Kor. Soc. Hortic. Sci. 2002, 43, 321–325. [Google Scholar]
- Salvador, A.; Arnal, L.; Besada, C.; Larrea, V.; Quiles, A.; Pérez-Munuera, I. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Technol. 2007, 46, 181–188. [Google Scholar] [CrossRef]
- Tessmer, M.A.; Besada, C.; Hernando, I.; Appezzato-da-Glória, B.; Quiles, A.; Salvador, A. Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biol. Technol. 2016, 120, 52–60. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef]
- Liu, M.; Wang, R.; Sun, W.; Han, W.; Li, G.; Zong, W.; Fu, J. Effects of postharvest calcium treatmenton the firmness of persimmon (Diospyros kaki) fruit based on a decline in WSP. Sci. Hortic. 2023, 307, 111490. [Google Scholar] [CrossRef]
- Ziogas, V.; Michailidis, M.; Karagiannis, E.; Tanou, G.; Molassiotis, A. Manipulating fruit quality through foliar nutrition. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 401–417. [Google Scholar]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Mele, M.A.; Lee, Y.T.; Islam, M.Z. Consumer preference, quality, and safety of organic and conventional fresh fruits, vegetables, and cereals. Foods 2021, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramırez-Rodrıguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- Yaqub, S.; Farooq, U.; Shafi, A.; Akram, K.; Murtaza, M.A.; Kausar, T.; Siddique, F. Chemistry and functionality of bioactive compounds present in persimmon. J. Chem. 2016, 2016, 3424025. [Google Scholar] [CrossRef]
- Navarro, P.; Perez-Lopez, A.J.; Mercader, M.T.; Carbonell-Barrachina, A.A.; Gabaldon, J.A. Antioxidant activity, color, carotenoids composition, minerals, vitamin C and sensory quality of organic and conventional mandarin juice, cv. Orogrande. Food Sci. Technol. Int. 2011, 17, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Cheng, N.; Zhou, J.; Wang, B.; Deng, J.; Cao, W. Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. J. Food Sci. Technol. 2014, 51, 950–956. [Google Scholar] [CrossRef]
- Paoletti, F. Chemical composition of organic food products. In Handbook of Food Chemistry; Springer: Heidelberg, Germany, 2015; pp. 555–584. [Google Scholar]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
Parameter | Conventional Orchards | Organic Orchards |
---|---|---|
Sand (%) | 28.1 | 22.4 |
Silt (%) | 37.1 | 54.9 |
Clay (%) | 34.8 | 22.7 |
USDA Classification | Clay loam | Silty loam |
pH | 8.4 | 7.6 |
OM (%) | 0.94 | 3.14 |
Norg (%) | 0.05 | 0.14 |
C/N | 11.47 | 13.05 |
Soluble POlsen 1 (ppm) | 15.2 | 18.0 |
Casse 2 (meq/L) | 6.81 | 7.43 |
Mgsse 2 (meq/L) | 2.89 | 2.43 |
Ksse 2 (meq/L) | 0.31 | 0.35 |
Management | Season | Chemical Compound | |||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | Ca | Fe | Mn | Zn | B | ||
kg year−1 ha−1 | mg year−1 ha−1 | ||||||||
Conventional | 1 | 170 | 74 | 155 | 0.3 | 2190 | 1535 | 1093 | 120 |
2 | 167 | 62 | 113 | 3.6 | 720 | 1650 | 650 | 120 | |
Organic | 1 | 27 | 1 | 27 | 0.7 | 150 | 120 | 420 | 0 |
2 | 20 | 1 | 27 | 0.0 | 150 | 31 | 332 | 0 |
Season | Yield (kg)/ha | |
---|---|---|
Conventional | Organic | |
1 | 44,452 a | 33,418 b |
2 | 44,174 a | 23,914 c |
Management | Season | N | P2O5 | K2O |
---|---|---|---|---|
Conventional | 1 | 261 b | 600 d | 286 d |
2 | 264 b | 712 c | 391 c | |
Organic | 1 | 1237 a | 33,418 a | 1238 a |
2 | 1195 a | 23,914 b | 886 b |
N (%) | P (%) | K (%) | Ca (%) | Mg (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Leaves | |||||||||
Management (M) | |||||||||
Conventional | - | 0.14 | 1.27 | 3.77 | 0.87 | ||||
Organic | - | ||||||||
Season (S) | |||||||||
1 | - | 0.14 | 1.27 | 4.21 a | 0.87 | ||||
2 | - | 3.33 b | |||||||
M × S | CV | OR | - | - | - | - | |||
S1 | 1.52 a | 1.48 a | |||||||
S2 | 1.52 a | 1.32 b | |||||||
Significance | |||||||||
M | ** | NS | NS | NS | NS | ||||
S | * | NS | NS | *** | NS | ||||
M × S | * | NS | NS | NS | NS | ||||
Fruits | |||||||||
Management (M) | |||||||||
Conventional | - | 0.08 | 0.90 | - | 0.04 | ||||
Organic | - | - | |||||||
Season (S) | |||||||||
1 | - | 0.08 | 0.90 | - | 0.04 | ||||
2 | - | - | |||||||
M × S | CV | OR | - | - | CV | OR | - | ||
S1 | 0.39 a | 0.42 a | S1 | 0.05 a | 0.03 b | ||||
S2 | 0.39 a | 0.31 b | S2 | 0.03 b | 0.03 b | ||||
Significance | |||||||||
M | * | NS | NS | * | NS | ||||
S | *** | NS | NS | NS | NS | ||||
M × S | ** | NS | NS | * | NS |
Fe (ppm) | Mn (ppm) | Zn (ppm) | B (ppm) | |||
---|---|---|---|---|---|---|
Leaves | ||||||
Management (M) | ||||||
Conventional | 55.97 | 271.09 b | - | 53.87 | ||
Organic | 340.46 a | - | ||||
Season (S) | ||||||
1 | 67.88 a | 305.78 | - | 53.87 | ||
2 | 44.06 b | - | ||||
M × S | - | - | CV | OR | - | |
S1 | 9.69 c | 58.6 a | ||||
S2 | 11.46 c | 47.58 b | ||||
Significance | ||||||
M | NS | ** | *** | NS | ||
S | *** | NS | NS | NS | ||
M × S | NS | NS | ** | NS | ||
Fruits | ||||||
Management (M) | ||||||
Conventional | 4.64 | 5.10 | 3.50 b | 15.17 | ||
Organic | 5.08 a | |||||
Season (S) | ||||||
1 | 4.64 | 5.10 | 5.05 a | 11.74 b | ||
2 | 3.53 b | 18.60 a | ||||
M × S | - | - | - | - | ||
Significance | ||||||
M | NS | NS | ** | NS | ||
S | NS | NS | ** | * | ||
M × S | NS | NS | NS | NS |
Weight (g) | CI | Firmness (N) | TSS (°Brix) | ||
---|---|---|---|---|---|
Management | Conventional | 216.94 | 0.54 b | 51.92 a | 15.05 |
Organic | 0.85 a | 47.31 b | |||
Season | 1 | 250.05 a | 0.42 b | 52.42 a | 15.05 |
2 | 183.83 b | 0.96 a | 46.80 b | ||
Significance | Management (M) | NS | ** | *** | NS |
Season (S) | *** | *** | *** | *** | |
M × S | NS | NS | NS | NS |
Group | Compound | Management | |
---|---|---|---|
Conventional | Organic | ||
Organic acids (mg 100 g−1) | Malic | 177.5 b | 239.1 a |
Citric | 164.8 a | 161.7 a | |
Succinic | 97.4 a | 87.5 a | |
Fumaric | 8.3 a | 8.0 a | |
Individual sugars (g kg−1) | Sucrose | 99.8 a | 100.2 a |
Glucose | 31.0 a | 37.3 a | |
Fructose | 22.3 a | 27.9 a | |
Carotenoids (µg 100 g−1) | β-carotene | 91.0 a | 115.0 a |
β-cryptoxanthin | 373.6 b | 581.3 a | |
Violaxanthin | 0.6 a | 0.6 a | |
Lutein | 4.2 a | 4.7 a | |
Zeaxanthin | 37.1 a | 43.5 a | |
Phenolics (mg 100 g−1) | Gallic | 2.2 a | 2.2 a |
p-coumaric | 0.32 a | 0.34 a | |
Ascorbic acid (mg 100 g−1) | 8.5 b | 10.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhena, N.Q.; Salvador, A.; Morales, J.; Bermejo, A.; Quiñones, A. Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy 2024, 14, 113. https://doi.org/10.3390/agronomy14010113
Vilhena NQ, Salvador A, Morales J, Bermejo A, Quiñones A. Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy. 2024; 14(1):113. https://doi.org/10.3390/agronomy14010113
Chicago/Turabian StyleVilhena, Nariane Q., Alejandra Salvador, Julia Morales, Almudena Bermejo, and Ana Quiñones. 2024. "Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon" Agronomy 14, no. 1: 113. https://doi.org/10.3390/agronomy14010113
APA StyleVilhena, N. Q., Salvador, A., Morales, J., Bermejo, A., & Quiñones, A. (2024). Ionomic Concentration and Metabolomic Profile of Organically and Conventionally Produced ‘Rojo Brillante’ Persimmon. Agronomy, 14(1), 113. https://doi.org/10.3390/agronomy14010113