Greenhouse Gas Emissions from Double-Season Rice Field under Different Tillage Practices and Fertilization Managements in Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
2.3. Measurements of CH4 and N2O Fluxes
2.4. Data Calculation and Statistical Analysis
3. Results
3.1. CH4 Emissions
3.2. N2O Emissions
3.3. Grain Yields
3.4. GWP and GHGI
4. Discussion
4.1. Effects of Tillage and Fertilization on CH4 Emissions
4.2. Effects of Tillage and Fertilization on N2O Emissions
4.3. The Balance of Yield and GHG Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. IPCC, 2021: Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Shang, Q.Y.; Yang, X.X.; Gao, C.M.; Wu, P.P.; Liu, J.J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Change Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2013. Available online: https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-mitigation-non-co2-ghgs-report-2010-2030 (accessed on 1 June 2023).
- FAO. Food and Agriculture Organization of the United Nations (FAO). 2020. Available online: https://www.fao.org/faostat/zh/#data/GT (accessed on 1 June 2023).
- Yang, T.; Wang, M.; Wang, X.; Xu, C.; Fang, F.; Li, F. Product Type, Rice Variety, and Agronomic Measures Determined the Efficacy of Enhanced-Efficiency Nitrogen Fertilizer on the CH4 Emission and Rice Yields in Paddy Fields: A Meta-Analysis. Agronomy 2022, 12, 2240. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE 2018, 13, e0196703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Change Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Yang, T.; Li, F.; Zhou, X.; Xu, C.; Fang, F. Impact of tillage on the spatial distribution of CH4 and N2O in the soil profile of late rice fields. Soil Tillage Res. 2021, 211, 105029. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Phillips, R.E.; Thomas, G.W.; Blevins, R.L.; Frye, W.W.; Phillips, S.H. No-tillage agriculture. Science 1980, 208, 1108–1113. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Rogerestrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar] [CrossRef]
- Bayer, C.; Costa, F.d.S.; Pedroso, G.M.; Zschornack, T.; Camargo, E.S.; Lima, M.A.d.; Frigheto, R.T.S.; Gomes, J.; Marcolin, E.; Macedo, V.R.M. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Res. 2014, 162, 60–69. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Cheng, Y.; Wang, D.; Qin, J.; Jiao, J.; Li, H.; Hu, F. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res. 2011, 113, 77–81. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, H.; Fan, X.; Yang, Y.; Ma, J.; Xu, H. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China. Atmos. Chem. Phys. 2016, 16, 11853–11866. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Shi, J.; Lin, W.; Liang, J.; Lu, Z.; Tang, X.; Liu, Y.; Wu, P.; Li, C. Soil bacteria mediate soil organic carbon sequestration under different tillage and straw management in rice-wheat cropping systems. Agriculture 2022, 12, 1552. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Deng, Z.; Xie, Y. Effects of no-tillage practice for late-rice on rice yield and global warming potential in double-cropping rice systems. Paddy Water Environ. 2022, 20, 441–447. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, X.; Xue, J.; Chen, Z.; Tang, H.; Chen, F. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS ONE 2013, 8, e65277. [Google Scholar] [CrossRef] [Green Version]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Banger, K.; Tian, H.; Lu, C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? Glob. Change Biol. 2012, 18, 3259–3267. [Google Scholar] [CrossRef]
- Feng, J.; Chen, C.; Zhang, Y.; Song, Z.; Deng, A.; Zheng, C.; Zhang, W. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agric. Ecosyst. Environ. 2013, 164, 220–228. [Google Scholar] [CrossRef]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Li, P.; Zhang, A.; Huang, S.; Han, J.; Jin, X.; Shen, X.; Hussain, Q.; Wang, X.; Zhou, J.; Chen, Z. Optimizing management practices under straw regimes for global sustainable agricultural production. Agronomy 2023, 13, 710. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Linquist, B.; van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Guo, J.; Song, Z.; Zhu, Y.; Wei, W.; Li, S.; Yu, Y. The characteristics of yield-scaled methane emission from paddy field in recent 35-year in China: A meta-analysis. J. Clean. Prod. 2017, 161, 1044–1050. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
- Nan, Q.; Wang, C.; Wang, H.; Yi, Q.; Liang, B.; Xu, J.; Wu, W. Biochar drives microbially-mediated rice production by increasing soil carbon. J. Hazard. Mater. 2020, 387, 121680. [Google Scholar] [CrossRef] [PubMed]
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; Röing de Nowina, K. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Res. 2019, 235, 18–26. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Wang, N.; Chang, Z.-Z.; Xue, X.-M.; Yu, J.-G.; Shi, X.-X.; Ma, L.Q.; Li, H.-B. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci. Total Environ. 2017, 581, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Lin, Y.; Ding, W.; Liu, D.; He, T.; Yoo, G.; Yuan, J.; Chen, Z.; Fan, J. Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biol. Biochem. 2017, 113, 89–98. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.e.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: A four-year case study in south China. Sci. Total Environ. 2016, 569, 1390–1401. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 2011, 11, 930–939. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Dong, Y.; Li, B.; Xiong, Z. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: Six-year field observation and meta-analysis. Agric. For. Meteorol. 2019, 278, 107625. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Bu, F.; Nan, Q.; Li, W.; Bolan, N.; Sarkar, B.; Meng, J.; Wang, H. Meta-Analysis for Quantifying Carbon Sequestration and Greenhouse Gas Emission in Paddy Soils One Year after Biochar Application. Agronomy 2022, 12, 3065. [Google Scholar] [CrossRef]
- NBS. National Bureau of Statistics (NBS). 2016. Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 2 June 2023).
- Kim, G.W.; Gutierrez-Suson, J.; Kim, P.J. Optimum N rate for grain yield coincides with minimum greenhouse gas intensity in flooded rice fields. Field Crops Res. 2019, 237, 23–31. [Google Scholar] [CrossRef]
- Xiao, H.; van Es, H.M.; Amsili, J.P.; Shi, Q.; Sun, J.; Chen, Y.; Sui, P. Lowering soil greenhouse gas emissions without sacrificing yields by increasing crop rotation diversity in the North China Plain. Field Crops Res. 2022, 276, 108366. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, F.; Zhang, H.; Liu, S. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the Southern China. Environ. Sci. Pollut. Res. 2016, 23, 24781–24795. [Google Scholar] [CrossRef]
- Shang, Q.; Cheng, C.; Wang, J.; Luo, K.; Zeng, Y.; Yang, X. Net global warming potential, greenhouse gas intensity and carbon footprint as affected by different tillage systems from Chinese double-cropping paddy fields. Soil Tillage Res. 2021, 209, 104947. [Google Scholar] [CrossRef]
- Watanabe, A.; Yoshida, M.; Kimura, M. Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. J. Geophys. Res. Atmos. 1998, 103, 8237–8242. [Google Scholar] [CrossRef]
- Smith, P.; Goulding, K.W.; Smith, K.A.; Powlson, D.S.; Smith, J.U.; Falloon, P.; Coleman, K. Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. Nutr. Cycl. Agroecosyst. 2001, 60, 237–252. [Google Scholar] [CrossRef]
- Cai, Z.; Shan, Y.; Xu, H. Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Sci. Plant Nutr. 2007, 53, 353–361. [Google Scholar] [CrossRef]
- Bodelier, P.L.E.; Roslev, P.; Henckel, T.; Frenzel, P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 2000, 403, 421–424. [Google Scholar] [CrossRef]
- Tanji, K.K.; Gao, S.; Scardaci, S.C.; Chow, A.T. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma 2003, 114, 333–353. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Geng, P.; Yang, Q.; Chen, K.; Liu, N.; Fan, Y.; Zhan, X.; Han, X. Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility. Sci. Rep. 2021, 11, 15495. [Google Scholar] [CrossRef]
- Hu, Z.H.; Ling, H.; Chen, S.T.; Shen, S.H.; Zhang, H.; Sun, Y.Y. Soil respiration, nitrification, and denitrification in a wheat farmland soil under different managements. Commun. Soil Sci. Plant Anal. 2013, 44, 3092–3102. [Google Scholar] [CrossRef]
- Liu, J.; Hou, H.; Sheng, R.; Chen, Z.; Zhu, Y.; Qin, H.; Wei, W. Denitrifying communities differentially respond to flooding drying cycles in paddy soils. Appl. Soil Ecol. 2012, 62, 155–162. [Google Scholar] [CrossRef]
- Peng, S.; Hou, H.; Xu, J.; Mao, Z.; Abudu, S.; Luo, Y. Nitrous oxide emissions from paddy fields under different water managements in southeast China. Paddy Water Environ. 2011, 9, 403–411. [Google Scholar] [CrossRef]
- Brown, R.L.; Hangs, R.; Schoenau, J.; Bedard-Haughn, A. Soil nitrogen and phosphorus dynamics and uptake by wheat grown in drained prairie soils under three moisture scenarios. Soil Sci. Soc. Am. J. 2017, 81, 1496–1504. [Google Scholar] [CrossRef]
- Huang, S.; Pant, H.K.; Lu, J. Effects of water regimes on nitrous oxide emission from soils. Ecol. Eng. 2007, 31, 9–15. [Google Scholar] [CrossRef]
- Kay, B.D.; VandenBygaart, A.J. Conservation tillage and depth stratification of porosity and soil organic matter. Soil Tillage Res. 2002, 66, 107–118. [Google Scholar] [CrossRef]
- Martínez, I.; Chervet, A.; Weisskopf, P.; Sturny, W.G.; Etana, A.; Stettler, M.; Forkman, J.; Keller, T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Tillage Res. 2016, 163, 141–151. [Google Scholar] [CrossRef]
- Yang, T.; Wu, J.; Bao, T.; Fengbo, L.; Feng, J.; Zhou, X.; Fang, F. Effects of tillage methods on distribution characteristics of CH4 and N2O in soil profile of double cropping rice field. Chin. J. Rice Sci. 2020, 12, 78. [Google Scholar] [CrossRef]
- Denardin, L.G.d.O.; Carmona, F.d.C.; Veloso, M.G.; Martins, A.P.; Freitas, T.F.S.d.; Carlos, F.S.; Marcolin, É.; Camargo, F.A.d.O.; Anghinoni, I. No-tillage increases irrigated rice yield through soil quality improvement along time. Soil Tillage Res. 2019, 186, 64–69. [Google Scholar] [CrossRef]
- Jian-She, Z.; Fu-Ping, Z.; Jin-Hua, Y.; Jin-Ping, W.; Ming-Li, C.; Li, C.-F.; Cao, C.-G. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric. Ecosyst. Environ. 2011, 140, 164–173. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; He, M.; Yuan, J.; Xu, L.; Tian, G. No-tillage effects on grain yield, N use efficiency, and nutrient runoff losses in paddy fields. Environ. Sci. Pollut. Res. 2016, 23, 21451–21459. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Parhizkar, M.; Shabanpour, M.; Esteban Lucas-Borja, M.; Zema, D.A.; Li, S.; Tanaka, N.; Cerda, A. Effects of length and application rate of rice straw mulch on surface runoff and soil loss under laboratory simulated rainfall. Int. J. Sediment Res. 2021, 36, 468–478. [Google Scholar] [CrossRef]
- Won, C.H.; Choi, Y.H.; Shin, M.H.; Lim, K.J.; Choi, J.D. Effects of rice straw mats on runoff and sediment discharge in a laboratory rainfall simulation. Geoderma 2012, 189, 164–169. [Google Scholar] [CrossRef]
- Verhoeven, E.; Decock, C.; Barthel, M.; Bertora, C.; Sacco, D.; Romani, M.; Sleutel, S.; Six, J. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biol. Biochem. 2018, 120, 58–69. [Google Scholar] [CrossRef]
- Wang, Z.P.; DeLaune, R.D.; Patrick, W.H., Jr.; Masscheleyn, P.H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 1993, 57, 382–385. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Y.; Cai, Z.; Yagi, K.; Zheng, X. Nitrous oxide emissions from an intensively cultivated maize–wheat rotation soil in the North China Plain. Sci. Total Environ. 2007, 373, 501–511. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Chen, J.; Liu, T.Q.; Cao, C.G.; Li, C.F. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China. Atmos. Environ. 2016, 144, 274–281. [Google Scholar] [CrossRef]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, L.; Liu, L.; Sheng, F.; Cao, C.; Li, C. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric. Ecosyst. Environ. 2021, 322, 107650. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Hu, T.; Mahmoud, A.; Li, J.; Zhu, R.; Jiao, X.; Jing, P. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis. Sci. Total Environ. 2022, 830, 154792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Huang, X.; Zhang, X.; Wan, L.; Wang, Z. Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth. Agric. Water Manag. 2021, 255, 107022. [Google Scholar] [CrossRef]
- Han, F.; Ren, L.; Zhang, X.-C. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. CATENA 2016, 137, 554–562. [Google Scholar] [CrossRef]
Factors | Treatment | CH4 (kg ha−1) | |||
---|---|---|---|---|---|
Early Rice | Late Rice | Fallow | Total | ||
Tillage (T) | RT | 75.9 ± 22.6 a | 433.3 ± 173.6 a | 1.4 ± 0.3 a | 510.6 ± 206.5 a |
NT | 59.9 ± 33.0 b | 205.6 ± 109.7 b | 1.1 ± 0.8 a | 267.0 ± 131.9 b | |
Fertilization (F) | |||||
CK | 60.9 ± 11.4 b | 256.5 ± 114.8 b | 0.7 ± 0.5 b | 318.1 ± 126.3 b | |
F | 43.0 ± 5.4 bc | 171.5 ± 38.6 c | 1.3 ± 0.4 ab | 215.8 ± 36.7 c | |
FB | 26.8 ± 3.1 c | 148.7 ± 27.9 c | 0.9 ± 0.3 b | 176.5 ± 29.7 c | |
FS | 140.9 ± 19.4 a | 701.7 ± 132.6 a | 2.1 ± 0.8 a | 844.7 ± 150.2 a | |
Tillage (T) × Fertilization (F) | |||||
RT-CK | 77.2 ± 7.5 c | 433.1 ± 41.3 b | 1.5 ± 0.1 ab | 511.7 ± 48.4 b | |
RT-F | 38.4 ± 6.3 d | 231.3 ± 12.2 c | 1.6 ± 0.4 ab | 271.4 ± 16.1 c | |
RT-FB | 25.9 ± 3.1 d | 177.5 ± 27.1 cd | 1.0 ± 0.2 bc | 204.4 ± 30.3 cd | |
RT-FS | 162.2 ± 14.4 a | 891.1 ± 72.2 a | 1.5 ± 0.4 ab | 1054.8 ± 86.7 a | |
NT-CK | 44.6 ± 2.2 d | 80.0 ± 8.3 d | 0.0 ± 0.4 c | 124.5 ± 7.6 d | |
NT-F | 47.5 ± 3.4 d | 111.7 ± 1.1 d | 1.0 ± 0.3 bc | 160.2 ± 4.0 cd | |
NT-FB | 27.7 ± 3.8 d | 120 ± 19.5 cd | 0.8 ± 0.5 bc | 148.5 ± 22.5 cd | |
NT-FS | 119.6 ± 16.7 b | 512.2 ± 53.1 b | 2.7 ± 1.0 a | 634.6 ± 68.5 b | |
F values | |||||
T | 6.62 * | 74.71 *** | 0.635 | 58.24 *** | |
F | 65.82 ** | 96.9 *** | 3.666 * | 91.15 *** | |
T × F | 4.13 * | 9.55 *** | 3.055 | 8.55 ** |
Factors | Treatment | N2O (kg ha−1) | |||
---|---|---|---|---|---|
Early Rice | Late Rice | Fallow | Total | ||
Tillage (T) | RT | 1.05 ± 0.24 b | 1.43 ± 0.40 b | 1.01 ± 0.32 b | 3.50 ± 0.85 b |
NT | 2.11 ± 0.75 a | 2.56 ± 0.85 a | 3.24 ± 1.40 a | 7.92 ± 2.72 a | |
Fertilization (F) | |||||
CK | 0.49 ± 0.07 c | 0.32 ± 0.04 c | 0.84 ± 0.26 c | 1.65 ± 0.31 c | |
F | 1.40 ± 0.24 b | 2.39 ± 0.47 b | 1.83 ± 0.45 b | 5.62 ± 1.01 b | |
FB | 2.03 ± 0.58 a | 2.43 ± 0.42 b | 1.42 ± 0.55 b | 5.88 ± 1.41 b | |
FS | 2.41 ± 0.75 a | 2.86 ± 0.71 a | 4.42 ± 1.72 a | 9.68 ± 3.11 a | |
Tillage (T) × Fertilization (F) | |||||
RT-CK | 0.40 ± 0.01 d | 0.38 ± 0.01 d | 0.49 ± 0.02 d | 1.27 ± 0.03 d | |
RT-F | 1.23 ± 0.07 bc | 1.71 ± 0.16 c | 1.15 ± 0.14 cd | 4.09 ± 0.32 c | |
RT-FB | 1.25 ± 0.14 bc | 1.89 ± 0.29 c | 0.63 ± 0.07 d | 3.77 ± 0.47 c | |
RT-FS | 1.32 ± 0.11 bc | 1.77 ± 0.11 c | 1.77 ± 0.21 bc | 4.85 ± 0.21 c | |
NT-CK | 0.58 ± 0.06 cd | 0.27 ± 0.02 d | 1.18 ± 0.24 cd | 2.03 ± 0.30 d | |
NT-F | 1.56 ± 0.34 b | 3.07 ± 0.25 b | 2.52 ± 0.10 b | 7.14 ± 0.36 b | |
NT-FB | 2.81 ± 0.46 a | 2.97 ± 0.27 b | 2.21 ± 0.36 b | 7.98 ± 0.55 b | |
NT-FS | 3.50 ± 0.46 a | 3.95 ± 0.23 a | 7.07 ± 0.55 a | 14.51 ± 0.87 a | |
F values | |||||
T | 30.76 *** | 65.31 *** | 139.81 *** | 189.71 *** | |
F | 19.32 *** | 66.53 *** | 69.99 *** | 104.63 *** | |
T × F | 6.39 ** | 11.61 *** | 30.24 *** | 34.57 *** |
Factors | Treatment | Yield (t ha−1) | ||||
---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2017–2020 | ||
Tillage (T) | RT | 14.0 ± 1.1 a | 10.5 ± 0.9 a | 15.3 ± 1.4 a | 12.5 ± 2.0 a | 13.1 ± 1.3 a |
NT | 11.6 ± 1.1 b | 9.1 ± 1.1 b | 15.1 ± 1.9 a | 12.3 ± 2.0 a | 12.0 ± 1.5 b | |
Fertilization (F) | ||||||
CK | 9.9 ± 0.9 b | 7.3 ± 0.9 b | 11.1 ± 0.9 c | 6.8 ± 0.4 d | 8.8 ± 0.6 c | |
F | 14.0 ± 0.9 a | 10.5 ± 0.4 a | 15.6 ± 0.7 b | 13.5 ± 0.3 c | 13.4 ± 0.4 b | |
FB | 13.8 ± 0.9 a | 10.8 ± 0.9 a | 18.3 ± 0.4 a | 15.0 ± 0.2 a | 14.5 ± 0.4 a | |
FS | 13.5 ± 0.8 a | 10.5 ± 0.4 a | 15.9 ± 0.7 b | 14.3 ± 0.3 b | 13.5 ± 0.3 b | |
Tillage (T) × Fertilization (F) | ||||||
RT | CK | 11.1 ± 0.5 c | 8.5 ± 0.7 c | 11.9 ± 0.9 d | 7.0 ± 0.3 c | 9.6 ± 0.3 d |
F | 15.4 ± 0.4 a | 10.9 ± 0.3 ab | 15.3 ± 0.6 c | 13.6 ± 0.4 b | 13.8 ± 0.4 bc | |
FB | 15.0 ± 0.5 a | 12.0 ± 0.7 a | 18.0 ± 0.5 ab | 15.1 ± 0.3 a | 15.0 ± 0.3 a | |
FS | 14.5 ± 0.6 a | 10.5 ± 0.5 b | 16.0 ± 0.5 bc | 14.2 ± 0.3 ab | 13.8 ± 0.2 bc | |
NT | CK | 8.7 ± 0.5 d | 6.2 ± 0.4 d | 10.3 ± 0.7 d | 6.6 ± 0.5 c | 7.9 ± 0.2 e |
F | 12.6 ± 0.3 b | 10.1 ± 0.4 b | 15.8 ± 0.9 c | 13.4 ± 0.1 b | 13.0 ± 0.4 c | |
FB | 12.0 ± 0.6 b | 9.7 ± 0.2 bc | 18.5 ± 0.5 a | 14.9 ± 0.1 a | 13.9 ± 0.1 b | |
FS | 12.5 ± 0.3 bc | 10.6 ± 0.3 b | 15.8 ± 0.9 c | 14.4 ± 0.4 ab | 13.3 ± 0.4 bc | |
F values | ||||||
T | 51.65 *** | 16.96 *** | 0.226 | 0.312 | 24.70 *** | |
F | 33.53 *** | 25.56 *** | 36.19 *** | 280.72 *** | 152.43 *** | |
T × F | 0.304 | 3.401 | 1.058 | 0.329 | 1.644 |
Factors | Treatment | GWP (Kg CO2-eq ha−1) | Ratios of GWP (%) | GHGI (Kg CO2-eq kg−1) | |
---|---|---|---|---|---|
CH4 | N2O | ||||
Tillage (T) | RT | 14,740.4 ± 5638.0 a | 90.9 ± 3.8 a | 9.1 ± 3.8 b | 1.17 ± 0.43 a |
NT | 9369.0 ± 4195.9 b | 74.9 ± 5.8 b | 25.1 ± 5.8 a | 0.75 ± 0.29 b | |
Fertilization (F) | |||||
CK | 9039.5 ± 3344.7 b | 91.6 ± 4.1 a | 8.4 ± 4.1 b | 0.98 ± 0.31 b | |
F | 7359.6 ± 750.4 bc | 77.8 ± 5.8 b | 22.2 ± 5.8 a | 0.55 ± 0.05 c | |
FB | 6369 ± 648.3 c | 73.9 ± 7.0 b | 26.1 ± 7.0 b | 0.44 ± 0.05 c | |
FS | 25,450.7 ± 3296.7 a | 88.2 ± 4.9 a | 11.8 ± 4.9 a | 1.87 ± 0.22 a | |
Tillage (T) × Fertilization (F) | |||||
RT | CK | 14,162.2 ± 1306.1 c | 97.5 ± 0.2 a | 2.5 ± 0.2 c | 1.46 ± 0.10 b |
F | 8443.9 ± 481.2 d | 86.8 ± 0.9 b | 13.2 ± 0.9 b | 0.61 ± 0.05 c | |
FB | 6549.4 ± 787.5 de | 83.7 ± 3.2 b | 16.3 ± 3.2 b | 0.44 ± 0.06 c | |
FS | 29,806.4 ± 2290.2 a | 95.5 ± 0.5 a | 4.5 ± 0.5 c | 2.16 ± 0.15 a | |
NT | CK | 3916.8 ± 138.8 e | 85.7 ± 2.6 b | 14.3 ± 2.6 b | 0.49 ± 0.02 c |
F | 6275.4 ± 20.4 de | 68.9 ± 1.6 c | 31.1 ± 1.6 a | 0.48 ± 0.01 c | |
FB | 6188.7 ± 631.0 de | 64.1 ± 4.1 c | 35.9 ± 4.1 a | 0.44 ± 0.05 c | |
FS | 21,095.1 ± 1718.8 b | 80.9 ± 2.3 b | 19.1 ± 2.3 b | 1.58 ± 0.11 b | |
F values | |||||
T | 41.31 *** | 95.28 *** | 95.28 *** | 52.66 *** | |
F | 115.94 *** | 26.12 *** | 26.12 *** | 127.69 *** | |
T × F | 8.39 ** | 1.129 | 1.129 | 14.92 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Yang, Z.; Xu, C.; Li, F.; Fang, F.; Feng, J. Greenhouse Gas Emissions from Double-Season Rice Field under Different Tillage Practices and Fertilization Managements in Southeast China. Agronomy 2023, 13, 1887. https://doi.org/10.3390/agronomy13071887
Yang T, Yang Z, Xu C, Li F, Fang F, Feng J. Greenhouse Gas Emissions from Double-Season Rice Field under Different Tillage Practices and Fertilization Managements in Southeast China. Agronomy. 2023; 13(7):1887. https://doi.org/10.3390/agronomy13071887
Chicago/Turabian StyleYang, Tong, Zhi Yang, Chunchun Xu, Fengbo Li, Fuping Fang, and Jinfei Feng. 2023. "Greenhouse Gas Emissions from Double-Season Rice Field under Different Tillage Practices and Fertilization Managements in Southeast China" Agronomy 13, no. 7: 1887. https://doi.org/10.3390/agronomy13071887
APA StyleYang, T., Yang, Z., Xu, C., Li, F., Fang, F., & Feng, J. (2023). Greenhouse Gas Emissions from Double-Season Rice Field under Different Tillage Practices and Fertilization Managements in Southeast China. Agronomy, 13(7), 1887. https://doi.org/10.3390/agronomy13071887