Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analyses
3. Results
3.1. Weed Composition
3.2. Effect of Variables on Diversity
3.3. Effect of Variables on Weed Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Nr of Field | Soil Type | Soil Texture | Soil Reaction | Soil Properties | ||||
---|---|---|---|---|---|---|---|---|
Salt | Humus | CaCO3 | P2O5 | K2O | ||||
[Arany] | [pH KCl] | m/m % | mg · kg−1 | |||||
1 | Loamy-clay soil | 45 | 7.08 | 0.03 | 3.11 | 2.91 | 134 | 356 |
2 | Alluvial meadow soil | 52 | 6.85 | 0.06 | 2.21 | 0.42 | 57 | 312 |
3 | Alluvial meadow soil | 53 | 6.73 | 0.06 | 2.05 | 0.51 | 54 | 309 |
4 | Alluvial meadow soil | 57 | 6.87 | 0.07 | 1.74 | 0.63 | 46 | 268 |
5 | Alluvial meadow soil | 60 | 6.18 | 0.07 | 1.96 | 0.18 | 41 | 253 |
6 | Alluvial meadow soil | 60 | 6.27 | 0.07 | 1.90 | 0.25 | 45 | 282 |
7 | Alluvial meadow soil | 63 | 6.17 | 0.07 | 2.08 | 0.33 | 56 | 273 |
8 | Alluvial meadow soil | 52 | 6.25 | 0.11 | 2.19 | 0.10 | 132 | 494 |
9 | Alluvial meadow soil | 54 | 6.70 | 0.11 | 1.82 | 0.24 | 204 | 385 |
10 | Loamy-clay soil | 46 | 6.53 | 0.03 | 2.55 | 0.08 | 325 | 309 |
11 | Loamy-clay soil | 48 | 6.96 | 0.03 | 3.25 | 1.30 | 286 | 383 |
12 | Clay soil | 52 | 5.63 | 0.06 | 3.75 | 0.08 | 220 | 501 |
13 | Loamy-clay soil | 49 | 6.57 | 0.05 | 3.32 | 0.08 | 420 | 455 |
14 | Alluvial meadow soil | 55 | 7.03 | 0.09 | 2.20 | 0.38 | 136 | 375 |
15 | Alluvial meadow soil | 56 | 6.10 | 0.08 | 1.99 | 0.23 | 48 | 278 |
16 | Alluvial meadow soil | 63 | 5.96 | 0.07 | 1.94 | 0.35 | 41 | 268 |
17 | Alluvial meadow soil | 63 | 6.25 | 0.08 | 1.97 | 0.29 | 77 | 266 |
18 | Clay soil | 52 | 5.73 | 0.07 | 3.38 | 0.08 | 203 | 481 |
19 | Clay soil | 53 | 5.83 | 0.06 | 3.66 | 0.10 | 237 | 541 |
20 | Loamy-clay soil | 49 | 6.57 | 0.06 | 3.37 | 0.11 | 382 | 480 |
21 | Loamy-clay soil | 49 | 6.53 | 0.04 | 3.26 | 0.08 | 399 | 437 |
22 | Loamy-clay soil | 49 | 6.82 | 0.05 | 3.68 | 0.42 | 278 | 546 |
23 | Loamy-clay soil | 49 | 6.57 | 0.05 | 3.32 | 0.08 | 420 | 455 |
24 | Alluvial meadow soil | 57 | 6.95 | 0.06 | 1.98 | 0.65 | 68 | 274 |
25 | Alluvial meadow soil | 59 | 6.24 | 0.05 | 1.85 | 0.25 | 62 | 281 |
26 | Alluvial meadow soil | 57 | 6.97 | 0.09 | 2.89 | 1.66 | 338 | 295 |
27 | Alluvial meadow soil | 54 | 6.94 | 0.09 | 2.72 | 1.58 | 351 | 425 |
28 | Loamy-clay soil | 50 | 6.90 | 0.04 | 3.73 | 0.38 | 238 | 523 |
29 | Loamy-clay soil | 47 | 6.81 | 0.05 | 3.57 | 0.43 | 159 | 465 |
30 | Loamy-clay soil | 50 | 6.86 | 0.06 | 3.48 | 0.51 | 338 | 515 |
31 | Loamy-clay soil | 49 | 6.77 | 0.06 | 3.66 | 0.44 | 316 | 538 |
References
- Lake, L.; Guilioni, L.; French, B.; Sadras, V.O. Field Pea. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 320–341. [Google Scholar] [CrossRef]
- Hungarian Central Statistical Office. Available online: https://www.ksh.hu/stadat_files/mez/hu/mez0012.html (accessed on 30 May 2023).
- Hungarian Central Statistical Office. Available online: https://www.ksh.hu/stadat_files/mez/hu/mez0013.html (accessed on 30 May 2023).
- Endres, G.; Kandel, H. Field Pea Production; NDSU: Fargo, ND, USA, 2021; pp. 1–11. Available online: https://www.ndsu.edu/agriculture/sites/default/files/2021-12/a1166.pdf (accessed on 30 May 2023).
- Schüller, F. A borsó gazdasági jelentősége és felhasználása. In A borsó. Magyarország kultúrflórája; Mándy, G., Szabó, L., Ács, A., Eds.; Akadémiai kiadó: Budapest, Hungary, 1980; pp. 127–130. [Google Scholar]
- Nagy, J. Vetésforgó és vetésváltás. In Földműveléstan; Nyíri, L., Ed.; Mezőgazda kiadó: Budapest, Hungary, 1993; pp. 294–330. [Google Scholar]
- Ujvárosi, M. Gyomirtás; Mezőgazdasági kiadó: Budapest, Hungary, 1973; pp. 99–159. [Google Scholar]
- McKey, K.; Schatz, B.; Endres, G. Field Pea Production; NDSU: Fargo, ND, USA, 2003; pp. 1–8. Available online: https://agresearch.montana.edu/wtarc/producerinfo/agronomy-nutrient-management/Pulses/NDSUFactSheet.pdf (accessed on 30 May 2023).
- Reisinger, P. A borsó gyomnövényei. In Növényvédelem; Glits, M., Horváth, J., Kuroli, G., Petróczi, I., Eds.; Mezőgazda kiadó: Budapest, Hungary, 1997; pp. 305–307. [Google Scholar]
- Reisinger, P. Borsó. In Gyomnövények, Gyomirtás, Gyombiológia; Hunyadi, K., Béres, I., Kazinczy, G., Eds.; Mezőgazda kiadó: Budapest, Hungary, 2000; pp. 516–518. [Google Scholar]
- Nordmeyer, H.; Häusler, A. Einfluss von Bodeneigenschaften auf die Segetalflora von Ackerflächen (Impact of soil properties on weed distribution within agricultural fields). J. Plant Nutr. Soil Sci. 2004, 167, 328–336. [Google Scholar] [CrossRef]
- Hashem, A. Weedsmart: Does Soil pH Affect Weed Management? Available online: https://www.graincentral.com/cropping/weedsmart-does-soil-ph-affect-weed-management (accessed on 30 May 2023).
- Repsiene, R.; Ozeraitiene, D. Manuring effect on the soil properties and crop rotation yield. Agriculture 2006, 93, 199–209. [Google Scholar]
- Forcella, F. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 1998, 8, 201–210. [Google Scholar] [CrossRef]
- Hakansson, S. Weeds and Weed Management on Arable Land—An Ecological Approach; CABI: Cambridge, MA, USA, 2003; pp. 56–80. [Google Scholar]
- Hock, B.; Elstner, C.F. Limitation of salt stress to plant growth. In Plant Toxicology; Hock, B.; Elstner, C.F. Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 91–224. [Google Scholar]
- Singh, R. Weed management in major kharif and rabi crops. In National Training on Advances in Weed Management; ICAR-DWR: Jabalpur, India, 2014; pp. 31–40. [Google Scholar]
- Akbarimoghaddam, H.; Galavi, L.; Ghanbari, A.; Panjehkeh, N. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J. Sci. 2011, 9, 43–50. [Google Scholar]
- Borhidi, A. Social Behavior Types of the Hungarian Flora, Its Naturalness and Relative Ecological Indicator Values; Janus Pannonius University: Pécs, Hungary, 1993; p. 37. [Google Scholar]
- Bano, A.; Fatima, M. Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils 2009, 45, 405–413. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Kaur, P.; Mahajan, G.; Randhawa, R.K.; Singh, H.; Kang, M.S. Global Warming and its Possible Impact on Agriculture in India. Adv. Agron. 2014, 123, 65–121. [Google Scholar]
- Patterson, D.T. Weeds in a Changing Climate. Weed Sci. 1995, 43, 685–700. [Google Scholar] [CrossRef]
- Patterson, D.T.; Westbrook, J.K.; Joyce, R.J.V.; Lingren, P.D.; Rogasik, J. Weeds, insects, and diseases. Clim. Chang. 1999, 43, 711–727. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.F.; Howden, S.M. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef]
- Weber, E.; Gut, D. A survey of weeds that are increasingly spreading in Europe. Agron. Sustain. Dev. 2005, 25, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Clements, D.R.; DiTommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 2011, 51, 227–240. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Chang. Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Hanzlik, K.; Gerowitt, B. Occurrence and distribution of important weed species in German winter oilseed rape fields. J. Plant Dis. Prot. 2012, 119, 107–120. [Google Scholar] [CrossRef]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Giannini, A.; Biasutti, M.; Held, I.M.; Sobel, A.H. A global perspective on African climate. Clim. Chang. 2008, 90, 359–383. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, G.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Herms, C.P.; Cardina, J. Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci. 2006, 54, 263–273. [Google Scholar] [CrossRef]
- Pinke, G.; Giczi, Z.; Vona, V.; Dunai, É.; Vámos, O.; Kulmány, I.; Koltai, G.; Varga, Z.; Kalocsai, R.; Botta-Dukát, Z.; et al. Weed composition in Hungarian phacelia (Phacelia tanacetifolia Benth.) seed production: Could tine harrow take over chemical management? Agronomy 2022, 12, 891. [Google Scholar] [CrossRef]
- Búvár, G.; Hadászi, L.; Fodor, I. A forgatás nélküli talajművelés gyomszabályozási vonatkozásai. Gyak. Agrof. 2000, 11, 90–92. [Google Scholar]
- Rao, A.N.; Brainard, D.C.; Kumar, V.; Ladha, J.K.; Johnson, D.E. Preventive Weed Management in Direct-Seeded Rice: Targeting the Weed Seedbank. Adv. Agron. 2017, 144, 45–142. [Google Scholar] [CrossRef]
- Pekrun, C.; Claupein, W. The implication of stubble tillage for weed population dynamics in organic farming. Weed Res. 2006, 46, 414–423. [Google Scholar] [CrossRef]
- Mohler, C.L. Mechanical management of weeds. In Ecological Management of Agricultural Weeds; Liebman, M., Mohler, C.L., Staver, C.P., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 139–209. [Google Scholar]
- Andersons Centre. Crop Production Technology. The Effect of the Loss of Plant Protection Products on UK Agriculture and Horticulture and the Wider Economy. Available online: https://theandersonscentre.co.uk/wp-content/uploads/2017/07/Andersons-Final-Report.pdf (accessed on 30 May 2023).
- Kismányoky, A. Effect of Agrotechnical Factors to Crop Plants and Weeds. Ph.D. Thesis, University of Pannonia, Keszthely, Hungary, 2010. Available online: http://konyvtar.uni-pannon.hu/doktori/2010/Kismanyoky_Andras_theses_en.pdf (accessed on 30 May 2023).
- Larcher, W. Physiological Plant Ecology, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1955; pp. 28–40. [Google Scholar]
- Hanf, M. Ackerunkräuter Europas mit ihren Keimlingen und Samen, 4th ed.; Eugen Ulmer: Stuttgart, Germany, 1999; pp. 301–321. [Google Scholar]
- Zimdahl, R. Fundamentals of Weed Science, 5th ed.; Academic Press: Cambridge, MA, USA, 2007; pp. 260–281. [Google Scholar]
- Harker, K.N.; Blackshaw, R.E.; Clayton, G.W. Timing weed removal in field pea (Pisum sativum). Weed Technol. 2001, 15, 277–283. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Sheaffer, C.C.; Wyse, D.L.; Michaels, T.E. Yield and weed abundance in early- and late-sown field pea and lentil. Agron. J. 2012, 104, 1056–1064. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Karkanis, A.; Bilalis, D.; Efthimiadis, P. The phenomenon of crop-weed competition; a problem or a key for sustainable weed management? J. Food Agric. Environ. 2009, 7, 861–868. [Google Scholar]
- Spies, J.M.; Warkentin, T.D.; Shirtliffe, S.J. Variation in field pea (Pisum sativum) cultivars for basal branching and weed competition. Weed Sci. 2011, 59, 218–223. [Google Scholar] [CrossRef]
- Harker, K.N.; Clayton, G.W.; Blackshaw, R.E. Comparison of leafy and semileafless pea for integrated weed management. Weed Technol. 2008, 22, 124–131. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Diffey, S. Influences of field pea (Pisum sativum) density on grain yield and competitiveness with annual ryegrass (Lolium rigidum) in south-eastern Australia. Aust. J. Exp. Agric. 2006, 46, 1465–1472. [Google Scholar] [CrossRef]
- Wall, D.A.; Friesen, G.H.; Bhati, T.K. Wild mustard interference in traditional and semi-leafless field peas. Can. J. Plant Sci. 1991, 71, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Marx, G.A.; Hagedorn, D.J. Plant population and weeds growth relation in canning peas. Weeds 1961, 9, 494–496. [Google Scholar] [CrossRef]
- Van Der Maarel, E.; Franklin, J. Vegetation ecology: Historical notes and outline. In Weed Ecology, 2nd ed.; Van Der Maarel, E., Franklin, J., Eds.; Wiley-Blackwell: Oxford, UK, 2013; pp. 1–27. [Google Scholar]
- Fox, J. Applied Regression Analysis and Generalized Linear Models, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.M.; Freeny, A.; Heiberger, R.M. Analysis of variance, designed experiments. In Statistical Models in S, 1st ed.; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992; pp. 145–194. [Google Scholar]
- Soper, H.E.; Young, A.W.; Cave, B.M.; Lee, A.; Pearson, K. On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R.A. Fisher. A co-operative study. Biometrika 1917, 11, 328–413. [Google Scholar] [CrossRef]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer: New York, NY, USA, 2011; pp. 34–50. [Google Scholar]
- Lososová, Z.; Chytry, M.; Cimalová, S.; Kropác, Z.; Otypková, Z.; Pysek, P.; Tichy, L. Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 2004, 15, 415–422. [Google Scholar] [CrossRef]
- Dorner, Z. Analysis of Weed Flora of Ecological Farming System at the Ecological Model Farm of Kishantos. Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2006. [Google Scholar]
- Menalled, U.D.; Adeux, G.; Cordeau, S.; Smith, R.G.; Mirsky, S.B.; Ryan, M.R. Cereal rye mulch biomass and crop density affect weed suppression and community assembly in no-till planted soybean. Ecosphere 2022, 13, e4147. [Google Scholar] [CrossRef]
- Lundkvist, A.; Salomonsson, L.; Karlsson, L.; Gustavsson, A.-M.D. Effects of organic farming on weed flora composition in a long term perspective. Eur. J. Agron. 2008, 28, 570–578. [Google Scholar] [CrossRef]
- Zalai, M.; Dorner, Z. Weed flora of cereals in different farming systems. Plant Breed. Seed Sci. 2010, 61, 15–23. [Google Scholar] [CrossRef]
- Salonen, J.; Hyvönen, T.; Jalli, H. Weed flora and weed management of field peas in Finland. Agric. Food Sci. 2005, 14, 189–201. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Smagacz, J.; Kwiatkowski, C.A.; Harasim, E.; Wozniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture 2020, 10, 186. [Google Scholar] [CrossRef]
- CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.27133 (accessed on 2 June 2023).
- CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.42689 (accessed on 2 June 2023).
- CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.12648 (accessed on 2 June 2023).
- CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.56864 (accessed on 2 June 2023).
- Travlos, I.; Gazoulis, I.; Kanatas, P.; Tsekoura, A.; Zannopoulos, S.; Papastylianou, P. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Front. Agron. 2020, 2, 1. [Google Scholar] [CrossRef]
- Körös Valley District Environment and Water Directorate. Available online: http://www.kovizig.hu/04-vizrajz/04-hidrometeorologia/03-evi-csapadekadatok/evi-csapadekadatok.php (accessed on 2 June 2023).
- Glemnitz, M.; Radics, L.; Hoffmann, J.; Czimber, G. Weed species richness and species composition of different arable field types—A comparative analysis along a climate gradient from south to north Europe. J. Plant Dis. Prot. 2006, 20, 577–586. [Google Scholar]
- Pätzold, S.; Hbirkou, C.; Dicke, D.; Gerhards, R.; Welp, G. Linking weed patterns with soil properties: A long-term case study. Precis. Agric. 2020, 21, 569–588. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guo, M.; Wang, H. Impact of soil texture and salt type on salt precipitation and evaporation under different hydraulic conditions. Hydrol. Process. 2022, 36, e14793. [Google Scholar] [CrossRef]
- Mobeena, S.; Thavaprakaash, N.; Vaiyapuri, K.; Djanaguiraman, M.; Geethanjali, S.; Geetha, P. Influence of different types of soils on the growth and yield of Quinoa (Chenopodium quinoa Wild.). J. Appl. Nat. Sci. 2023, 15, 365–370. [Google Scholar] [CrossRef]
- Mohler, C.L.; Liebmann, M. Weed Productivity and Composition in Sole Crops and Intercrops of Barley and Field Pea. J. Appl. Ecol. 1987, 24, 685–699. [Google Scholar] [CrossRef]
- Novák, R.; Magyar, M.; Simon, G.; Kadaravek, B.; Kadaravekné Guttyán, A.; Nagy, M.; Blazsek, K.; Erdélyi, K.; Farkas, G.; Gyulai, B.; et al. Change in the spread of common ragweed in Hungary in the light of the National Arable Weed Survey (1947–2019). In Proceedings of the International Ragweed Society Conference, Budapest, Hungary, 8–9 September 2022. [Google Scholar]
- Poggio, S.L. Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agric. Ecosyst. Environ. 2005, 109, 48–58. [Google Scholar] [CrossRef]
Variable (Unit) | Range/Recorded or Calculated Values |
---|---|
Soil factors | |
Soil type Soil texture (KArany) Soil pH (KCl) B Soil properties (m/m %) Salt Humus B CaCO3B Soil properties (mg kg–1) P2O5 K2O B | Alluvial meadow soil, clay soil, loamy-clay soil 40–63 5.63–7.08 0.03–0.11 1.74–3.75 0.08–2.91 40.7–420 253–546 |
Environmental factors | |
Altitude (m, AMSL) Latitude (°) Longitude (°) B Year | 78–86 46.73990–46.97027 20.42458–20.90111 2017–2020 |
Management factors | |
Tillage system Tillage depth (cm) A Farming Nr. of mechanical weed control applications A MCPB herbicide (g a.i. ha–1) A Preceding crops a Wintering crops B b Spring row crops B c Spring dense crops A d Amount of fertilizer (kg ha–1) N A P2O5 A K2O A | ploughing, loosening 30–50 conventional, organic 0–1 0–1200 0–1 0–0.7 0–0.7 0–63 0–22.5 0–22.5 |
Factors | df | Gross Effect | Net Effect | ||||
---|---|---|---|---|---|---|---|
Explained Variation (%) | R2adj | Explained Variation (%) | R2adj | F | p-Value | ||
Soil type Soil texture (Arany) Soil salt content Soil P2O5 content Year Altitude Latitude Farming Tillage | 2 1 1 1 3 1 1 1 1 | 23.2 20.0 14.4 12.9 29.4 13.6 14.9 23.5 12.1 | 0.18 0.17 0.11 0.10 0.22 0.11 0.12 0.21 0.09 | 10.0 2.9 4.9 3.5 15.6 3.5 3.9 5.8 3.0 | 0.12 0.03 0.06 0.04 0.18 0.04 0.05 0.08 0.04 | 5.56 3.20 5.52 3.91 5.82 3.92 4.38 6.44 3.31 | 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.009 |
Species | Ax 1 Score | Fit | Species | Ax 1 Score | Fit |
---|---|---|---|---|---|
Alluvial meadow soil (+ high; − low) | Soil texture (Arany; + high; − low) | ||||
Xanthium italicum Hibiscus trionum Setaria viridis Avena fatua Triticum spelta Anagallis arvensis Chenopodium album Triticum aestivum Fallopia convolvulus Convolvulus arvensis | 0.41 0.28 0.13 0.11 0.11 −0.05 −0.13 −0.17 −0.33 −0.43 | 0.52 0.21 0.27 0.15 0.09 0.12 0.10 0.25 0.22 0.21 | Chenopodium album Echinochloa crus-galli Chenopodium polyspermum Tripleurospermum inodorum Chenopodium hybridum Triticum aestivum Avena fatua Fallopia convolvulus Triticum spelta Xanthium italicum | 0.14 0.14 0.10 0.09 0.02 −0.06 −0.09 −0.11 −0.12 −0.12 | 0.11 0.03 0.11 0.05 0.05 0.03 0.10 0.02 0.10 0.05 |
Clay soil (+ high; − low) | Salt content (+ high; − low) | ||||
Tripleurospermum inodorum Persicaria lapathifolia Chenopodium album Triticum aestivum Fallopia convolvulus Setaria viridis Avena fatua Hibiscus trionum Xanthium italicum Convolvulus arvensis | 0.23 0.22 0.16 0.14 0.13 −0.08 −0.10 −0.14 −0.15 −0.23 | 0.32 0.28 0.14 0.17 0.04 0.11 0.11 0.05 0.07 0.06 | Convolvulus arvensis Hibiscus trionum Amaranthus retroflexus Phragmites australis Avena fatua Anagallis arvensis Chenopodium polyspermum Tripleurospermum inodorum Cirsium arvense Fallopia convolvulus | 0.25 0.20 0.08 0.06 0.05 −0.05 −0.09 −0.11 −0.13 −0.23 | 0.07 0.11 0.13 0.21 0.03 0.10 0.10 0.07 0.06 0.11 |
Loamy-clay soil (+ high; − low) | Soil P2O5 content (+ high; − low) | ||||
Convolvulus arvensis Fallopia convolvulus Triticum aestivum Anagallis arvensis Setaria viridis Triticum spelta Persicaria lapathifolia Cirsium arvense Hibiscus trionum Xanthium italicum | 0.57 0.26 0.09 0.04 −0.08 −0.09 −0.17 −0.19 −0.20 −0.32 | 0.38 0.14 0.07 0.07 0.12 0.06 0.17 0.12 0.11 0.33 | Hibiscus trionum Amaranthus retroflexus Avena fatua Triticum spelta Setaria viridis Phragmites australis Ambrosia artemisiifolia Chenopodium polyspermum Triticum aestivum Fallopia convolvulus | 0.16 0.08 0.08 0.06 0.05 0.05 0.05 0.04 −0.14 −0.19 | 0.07 0.13 0.07 0.03 0.05 0.14 0.04 0.02 0.16 0.08 |
Species | Ax 1 Score | Fit | Species | Ax 1 Score | Fit |
---|---|---|---|---|---|
2017 (+ high; − low) | 2018 (+ high; − low) | ||||
Stachys annua Hibiscus trionum Cirsium arvense Chenopodium hybridum Calystegia sepium Sinapis arvensis Persicaria amphibia Trifolium repens Chenopodium album Echinochloa crus-galli | 0.22 0.21 0.20 0.05 0.04 0.04 0.02 0.01 −0.20 −0.33 | 0.31 0.12 0.13 0.33 0.23 0.24 0.10 0.22 0.21 0.19 | Fallopia convolvulus Chenopodium polyspermum Triticum aestivum Anagallis arvensis Amaranthus retroflexus Phragmites australis Lastuca serriola Amaranthus albus Avena fatua Convolvulus arvensis | 0.51 0.13 0.13 0.10 0.09 0.05 0.04 0.01 −0.12 −0.33 | 0.55 0.22 0.14 0.40 0.17 0.15 0.14 0.14 0.16 0.13 |
2019 (+ high; − low) | 2020 (+ high; − low) | ||||
Triticum spelta Persicaria lapathifolia Tripleurospermum inodorum Brassica napus Consolida regalis Rubus caesius Anagallis arvensis Datura stramonium Chenopodium polyspermum Hibiscus trionum | 0.17 0.17 0.16 0.06 0.04 0.03 −0.05 −0.09 −0.13 −0.20 | 0.21 0.16 0.15 0.14 0.14 0.13 0.10 0.14 0.22 0.11 | Echinochloa crus-galli Datura stramonium Avena fatua Ambrosia artemisiifolia Bromus tectorum Anagallis arvensis Triticum aestivum Persicaria lapathifolia Tripleurospermum inodorum Fallopia convolvulus | 0.61 0.17 0.14 0.07 0.01 −0.04 −0.11 −0.13 −0.13 −0.14 | 0.64 0.53 0.22 0.06 0.10 0.07 0.11 0.09 0.11 0.04 |
Altitude (+ high; − low) | Latitude (+ high; − low) | ||||
Stachys annua Triticum spelta Setaria viridis Phragmites australis Anagallis arvensis Chenopodium album Chenopodium polyspermum Hibiscus trionum Tripleurospermum inodorum Cirsium arvense | 0.18 0.12 0.08 0.05 0.03 −0.09 −0.11 −0.13 −0.14 −0.16 | 0.19 0.11 0.10 0.11 0.04 0.04 0.16 0.05 0.12 0.09 | Stachys annua Ambrosia artemisiifolia Triticum spelta Setaria viridis Anagallis arvensis Phragmites australis Chenopodium album Chenopodium polyspermum Cirsium arvense Hibiscus trionum | 0.17 0.10 0.09 0.06 0.04 0.03 −0.11 −0.12 −0.15 −0.18 | 0.19 0.13 0.06 0.07 0.06 0.04 0.06 0.20 0.08 0.10 |
Species | Ax 1 Score | Fit | Species | Ax 1 Score | Fit |
---|---|---|---|---|---|
Farming (+ organic; − conventional) | Tillage (+ loosening; − ploughing) | ||||
Cirsium arvense Hibiscus trionum Chenopodium polyspermum Chenopodium album Persicaria lapathifolia Tripleurospermum inodorum Chenopodium hybridum Triticum spelta Stachys annua Convolvulus arvensis | 0.22 0.21 0.15 0.11 0.10 0.10 0.02 −0.10 −0.14 −0.23 | 0.16 0.12 0.29 0.07 0.06 0.06 0.05 0.08 0.12 0.06 | Tripleurospermum inodorum Ambrosia artemisiifolia Fallopia convolvulus Anagallis arvensis Amaranthus retroflexus Chenopodium polyspermum Chenopodium album Xanthium italicum Persicaria lapathifolia Hibiscus trionum | 0.15 0.14 0.12 0.03 −0.05 −0.05 −0.07 −0.08 −0.10 −0.15 | 0.13 0.29 0.03 0.04 0.04 0.03 0.02 0.02 0.06 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, E.B.; Dorner, Z.; Csík, D.; Zalai, M. Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary. Agronomy 2023, 13, 1864. https://doi.org/10.3390/agronomy13071864
Kovács EB, Dorner Z, Csík D, Zalai M. Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary. Agronomy. 2023; 13(7):1864. https://doi.org/10.3390/agronomy13071864
Chicago/Turabian StyleKovács, Endre Béla, Zita Dorner, Dávid Csík, and Mihály Zalai. 2023. "Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary" Agronomy 13, no. 7: 1864. https://doi.org/10.3390/agronomy13071864
APA StyleKovács, E. B., Dorner, Z., Csík, D., & Zalai, M. (2023). Effect of Environmental, Soil and Management Factors on Weed Flora of Field Pea in South-East Hungary. Agronomy, 13(7), 1864. https://doi.org/10.3390/agronomy13071864