Change Trend and Attribution Analysis of Reference Evapotranspiration under Climate Change in the Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Spatial and Temporal Analysis for Reference Evapotranspiration
2.2.1. Spatial and Temporal Scales
2.2.2. Calculation of Reference Evapotranspiration
2.2.3. Historical and Future Climatic Data
2.2.4. Downscaling Process and Bias Correction
2.2.5. Trend Detection
2.3. Methods of Attribution Analysis
2.3.1. Sensitivity Index
2.3.2. Contribution Rate
3. Results
3.1. Evaluation of Bias Correction
3.2. Trend Detection and Changes of ET0 under Climate Change
3.2.1. Trend Detection and Relative Changes of ET0 at Annual Scale
3.2.2. Trend Detection and Relative Changes of ET0 at Seasonal Scale
3.3. Attribution Analysis of Climatic Variables to ET0 Change
3.3.1. Attribution Analysis at Annual Scale
3.3.2. Attribution Analysis at Seasonal Scale
4. Discussion
4.1. The Simulation Performance of the GCM Models
4.2. The Trend and Changes of ET0 at Annual Scale
4.3. The Trend and Changes of ET0 at Seasonal Scale
4.4. Impaction and Adaptation Prospects of Agriculture Water Use and Crop Cultivation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, R.G. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper (FAO): Rome, Italy, 1998; p. 56. [Google Scholar]
- Basso, B.; Martinez-Feria, R.A.; Rill, L.; Ritchie, J.T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 2021, 12, 1476. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Rashid, M.A.; Jabloun, M.; Andersen, M.N.; Zhang, X.; Olesen, J.E. Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agric. Water Manag. 2019, 222, 193–203. [Google Scholar] [CrossRef]
- Guo, D.; Olesen, J.E.; Manevski, K.; Ma, X. Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios. Agric. Water Manag. 2021, 245, 106575. [Google Scholar] [CrossRef]
- Allen, R.G.; Dhungel, R.; Dhungana, B.; Huntington, J.; Kilic, A.; Morton, C. Conditioning point and gridded weather data under aridity conditions for calculation of reference evapotranspiration. Agric. Water Manag. 2021, 245, 106531. [Google Scholar] [CrossRef]
- Teuling, A.J.; Van Loon, A.F.; Seneviratne, S.I.; Lehner, I.; Aubinet, M.; Heinesch, B.; Bernhofer, C.; Gruenwald, T.; Prasse, H.; Spank, U. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 2013, 40, 2071–2075. [Google Scholar] [CrossRef]
- Wang, C.; Niu, W. Effect Factors and Tendency of Water Demand and Water Use in Guanzhong lrrigation District. J. Irrig. Drain. 2014, 33, 17–21, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Song, Y.; Han, C.; Liu, J.; Liu, Z. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J. Hydrol. 2018, 568, 147–159. [Google Scholar] [CrossRef]
- Zhao, G.; Siebert, S.; Enders, A.; Rezaei, E.E.; Yan, C.; Ewert, F. Demand for multi-scale weather data for regional crop modeling. Agric. For. Meteorol. 2015, 200, 156–171. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhao, J.; Huang, Q. Quantitative driving analysis of climate on potential evapotranspiration in Loess Plateau incorporating synergistic effects. Ecol. Indic. 2022, 141, 109076. [Google Scholar] [CrossRef]
- Macek, U.; Bezak, N.; Sraj, M. Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 2018, 260, 183–192. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea? Agric. Water Manag. 2015, 150, 129–138. [Google Scholar] [CrossRef]
- Ndiaye, P.M.; Bodian, A.; Diop, L.; Dezetter, A.; Guilpart, E.; Deme, A.; Ogilvie, A. Future trend and sensitivity analysis of evapotranspiration in the Senegal River Basin. J. Hydrol.-Reg. Stud. 2021, 35, 100820. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Li, N.; Yang, D.; Ayantobo, O.O. Bias correction of precipitation data and its effects on aridity and drought assessment in china over 1961–2015. Sci. Total Environ. 2018, 639, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, S.; Liu, X.; Liu, C.; Zhao, C.; Zhao, H.; Zhou, Q.; Wang, Z. Comprehensive analysis of changes to catchment slope properties in the high-sediment region of the Loess Plateau, 1978–2010. J. Geogr. Sci. 2015, 25, 437–450. [Google Scholar] [CrossRef]
- Benettin, P.; Soulsby, C.; Birkel, C.; Tetzlaff, D.; Botter, G.; Rinaldo, A. Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments. Water Resour. Res. 2017, 53, 1864–1878. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Wang, Y.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather. Clim. Extrem. 2021, 31, 100304. [Google Scholar] [CrossRef]
- Zhang, B.; Soden, B.J. Constraining Climate Model Projections of Regional Precipitation Change. Geophys. Res. Lett. 2019, 46, 10522–10531. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, G.; Melesse, A.M.; Worqlul, A.W. Development of multi-model ensemble approach for enhanced assessment of impacts of climate change on climate extremes. Sci. Total Environ. 2020, 704, 135357. [Google Scholar] [CrossRef] [PubMed]
- Hermans, T.H.J.; Malagon-Santos, V.; Katsman, C.A.; Jane, R.A.; Rasmussen, D.J.; Haasnoot, M.; Garner, G.G.; Kopp, R.E.; Oppenheimer, M.; Slangen, A.B.A. The timing of decreasing coastal flood protection due to sea-level rise. Nat. Clim. Change 2023, 13, 359–366. [Google Scholar] [CrossRef]
- Merve, G.; Levent, K.M.; Kei, I. Assessing the impacts of future climate change on the hydroclimatology of the Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Sci. Total Environ. 2018, 648, 481–499. [Google Scholar]
- Liu, D.L.; Zuo, H. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Change 2012, 115, 629–666. [Google Scholar] [CrossRef]
- Stojkovic, M.; Kostic, S.; Prohaska, S.; Plavsic, J.; Tripkovic, V. A New Approach for Trend Assessment of Annual Streamflows: A Case Study of Hydropower Plants in Serbia. Water Resour. Manag. 2017, 31, 1089–1103. [Google Scholar] [CrossRef]
- Yang, C.; Lei, H. Climate and management impacts on crop growth and evapotranspiration in the North China Plain based on long-term eddy covariance observation. Agric. For. Meteorol. 2022, 325, 109147. [Google Scholar] [CrossRef]
- Li, C.; Wu, P.; Li, X.; Zhou, T.; Sun, S.; Wang, Y.; Luan, X.E.; Yu, X.A. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.G. Comparison of two different approaches of sensitivity analysis. Phys. Chem. Earth 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Change Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Assessment of global aridity change. J. Hydrol. 2015, 520, 300–313. [Google Scholar] [CrossRef]
- Vincent, L.A.; Zhang, X.; Bonsal, B.R.; Hogg, W.D. Homogenization of daily temperatures over Canada. J. Clim. 2002, 15, 1322–1334. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Thomas, A. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960–2011. J. Hydrol. 2018, 560, 461–470. [Google Scholar] [CrossRef]
- Mo, X.-G.; Hu, S.; Lin, Z.-H.; Liu, S.-X.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Change Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Huang, Z.W.; Yang, H.B.; Yang, D.W. Dominant climatic factors driving annual runoff changes at the catchment scale across China. Hydrol. Earth Syst. Sci. 2016, 20, 2573–2587. [Google Scholar] [CrossRef]
- Yao, N.; Li, L.; Feng, P.; Feng, H.; Liu, D.L.; Liu, Y.; Jiang, K.; Hu, X.; Li, Y. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Sci. Total Environ. 2020, 704, 135245. [Google Scholar] [CrossRef]
- Yassen, A.N.; Nam, W.-H.; Hong, E.-M. Impact of climate change on reference evapotranspiration in Egypt. CATENA 2020, 194, 104711. [Google Scholar] [CrossRef]
- Feng, T.; Su, T.; Ji, F.; Zhi, R.; Han, Z. Temporal Characteristics of Actual Evapotranspiration Over China Under Global Warming. J. Geophys. Res.-Atmos. 2018, 123, 5845–5858. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M. Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change. Water Resour. Manag. 2017, 31, 2207–2224. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrol. Earth Syst. Sci. 2017, 21, 1515–1526. [Google Scholar] [CrossRef]
- Rashid, M.A.; Andersen, M.N.; Wollenweber, B.; Zhang, X.; Olesen, J.E. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agric. For. Meteorol. 2018, 248, 119–129. [Google Scholar] [CrossRef]
- Yang, Y.T.; Roderick, M.L.; Zhang, S.L.; McVicar, T.R.; Donohue, R.J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 2019, 9, 44–48. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Sun, S.; Hagan, D.F.T.; Chen, T.; Dolman, H.; Liu, Y. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol. 2021, 595, 126037. [Google Scholar] [CrossRef]
GCM Models | Air Temperature (°C) | Air Pressure (k Pa) | Wind Speed (m s−1) | Solar Radiation (W m−2) | Vapor Pressure Deficit (k Pa) | ET0 (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
MPI-ESM1-2-HR | Calibration | 71.2% | 0.87 | 83.2% | 2.56 | 56.9% | 0.93 | 53.6% | 0.77 | 74.1% | 0.11 | 55.1% | 30.9 |
Validation | 81.9% | 0.83 | 85.7% | 1.15 | 68.7% | 0.91 | 61.8% | 0.67 | 81.5% | 0.09 | 68.3% | 26.2 | |
MRI-ESM2-0 | Calibration | 80.9% | 1.44 | 96.3% | 3.61 | 62.6% | 1.71 | 62.5% | 0.81 | 77.9% | 0.12 | 79.4% | 18.1 |
Validation | 92.7% | 0.64 | 98.5% | 1.67 | 76.2% | 1.23 | 69.1% | 0.62 | 82.8% | 0.1 | 88.1% | 14.1 | |
CMCC-ESM2 | Calibration | 79.1% | 2.99 | 80.5% | 4.33 | 55.7% | 1.96 | 73.9% | 0.52 | 72.3% | 0.16 | 65.3% | 31.3 |
Validation | 90.2% | 2.1 | 85.2% | 2.62 | 69.1% | 1.44 | 79.2% | 0.43 | 79.3% | 0.13 | 76.7% | 27.5 | |
CAS-ESM2-0 | Calibration | 87.3% | 1.94 | 90.7% | 5.79 | 50.6% | 1.55 | 69.5% | 0.23 | 81.9% | 0.19 | 76.6% | 26.3 |
Validation | 95.2% | 1.23 | 93.9% | 3.98 | 64.9% | 1.26 | 76.8% | 0.2 | 86.2% | 0.16 | 85.2% | 22.9 | |
Ensemble | Calibration | 78.9% | 17.7 | ||||||||||
Validation | 89.5% | 13.9 |
Seasons | ET0 in the Baseline Period | ET0 under the SSP245 Scenario | The SSP245 Scenario Relative to the Baseline Period | ET0 under the SSP585 Scenario | The SSP585 Scenario Relative to the Baseline Period |
---|---|---|---|---|---|
Spring | 270.1 | 274.5 | 1.6% | 269.3 | −0.3% |
Summer | 386.6 | 407.0 | 5.3% | 393.1 | 1.7% |
Autumn | 158.4 | 172.1 | 8.6% | 176.7 | 11.6% |
Winter | 97.3 | 100.5 | 3.3% | 101.0 | 3.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, D.; Olesen, J.E.; Manevski, K.; Pullens, J.W.M.; Li, A.; Liu, E. Change Trend and Attribution Analysis of Reference Evapotranspiration under Climate Change in the Northern China. Agronomy 2023, 13, 3036. https://doi.org/10.3390/agronomy13123036
Guo D, Olesen JE, Manevski K, Pullens JWM, Li A, Liu E. Change Trend and Attribution Analysis of Reference Evapotranspiration under Climate Change in the Northern China. Agronomy. 2023; 13(12):3036. https://doi.org/10.3390/agronomy13123036
Chicago/Turabian StyleGuo, Daxin, Jørgen Eivind Olesen, Kiril Manevski, Johannes W. M. Pullens, Aoxiang Li, and Enke Liu. 2023. "Change Trend and Attribution Analysis of Reference Evapotranspiration under Climate Change in the Northern China" Agronomy 13, no. 12: 3036. https://doi.org/10.3390/agronomy13123036
APA StyleGuo, D., Olesen, J. E., Manevski, K., Pullens, J. W. M., Li, A., & Liu, E. (2023). Change Trend and Attribution Analysis of Reference Evapotranspiration under Climate Change in the Northern China. Agronomy, 13(12), 3036. https://doi.org/10.3390/agronomy13123036