Sugar Beet Rooting Pattern Mediates Stomatal and Transpiration Responses to Progressive Water Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sugar Beet Cultivars
2.2. Experimental Setup
2.3. Measurement Methods
2.4. Statistical Evaluation
3. Results
3.1. Temporal Sequence of Sugar Beet Stress Response
3.2. Root Influences on Transpiration and Stomatal Behavior
3.3. Implications of Variety on Sugar Beet Dry-Down Response
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Food and Agriculture Organization of the United Nations (FAOSTAT). 2023. Available online: https://www.fao.org/faostat/en/#data (accessed on 13 August 2023).
- Märländer, B.; Hoffmann, C.; Koch, H.J.; Ladewig, E.; Merkes, R.; Petersen, J.; Stockfisch, N. Environmental situation and yield performance of the sugar beet crop in Germany: Heading for sustainable development. J. Agron. Crop Sci. 2003, 189, 201–226. [Google Scholar] [CrossRef]
- Kenter, C.; Hoffmann, C.M.; Märländer, B. Effects of weather variables on sugar beet yield development (Beta vulgaris L.). Eur. J. Agron. 2006, 24, 62–69. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. Npj Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Skonieczek, P.; Nowakowski, M.; Piszczek, J.; Matyka, L.; Zurek, M.; Rychcik, B.; Kazmierczak, M. Sensitivity of 24 sugar beet cultivars to water deficit during emergence. Acta Agrophysica 2018, 25, 409–419. [Google Scholar] [CrossRef]
- Ribeiro, I.C.; Pinheiro, C.; Ribeiro, C.M.; Veloso, M.M.; Simoes-Costa, M.C.; Evaristo, I.; Paulo, O.S.; Ricardo, C.P. Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Front. Plant Sci. 2016, 7, 1293. [Google Scholar] [CrossRef]
- Draycott, A.P. Sugar Beet; Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 1–8. [Google Scholar]
- Bloch, D.; Hoffmann, C. Seasonal development of genotypic differences in sugar beet (Beta vulgaris L.) and their interaction with water supply. J. Agron. Crop Sci. 2005, 191, 263–272. [Google Scholar] [CrossRef]
- Pidgeon, J.D.; Werker, A.R.; Jaggard, K.W.; Richter, G.M.; Lister, D.H.; Jones, P.D. Climatic impact on the productivity of sugar beet in Europe, 1961–1995. Agric. For. Meteorol. 2001, 109, 27–37. [Google Scholar] [CrossRef]
- Morillo-Velarde, R.; Ober, E.S. Water use and irrigation. In Sugar Beet; Draycott, A.P., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2006; pp. 221–255. [Google Scholar]
- Demmers-Derks, H.; Mitchell, R.A.C.; Mitchell, V.J.; Lawlor, D.W. Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ. 1998, 21, 829–836. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Jaggard, K.W.; Pidgeon, J.D. Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Clim. Chang. 2003, 58, 93–108. [Google Scholar] [CrossRef]
- Levitt, J. Responses of plants to environmental stresses. In Volume II. Water, Radiation, Salt, and Other Stresses; Academic Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Tardieu, F. Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. J. Exp. Bot. 2012, 63, 25–31. [Google Scholar] [CrossRef]
- Trnka, M.; Brázdil, R.; Možný, M.; Štěpánek, P.; Dobrovolný, P.; Zahradníček, P.; Balek, J.; Semerádová, D.; Dubrovský, M.; Hlavinka, P.; et al. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 2015, 35, 3733–3747. [Google Scholar] [CrossRef]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Tron, S.; Bodner, G.; Laio, F.; Ridolfi, L.; Leitner, D. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecol. Model. 2015, 312, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Brown, K.F.; Biscoe, P.V. Fibrous root growth and water use of sugar beet. J. Agric. Sci. 1985, 105, 679–691. [Google Scholar] [CrossRef]
- Brown, K.F.; Messem, A.B.; Dunham, R.J.; Biscoe, P.V. Effect of drought on growth and water use of sugar beet. J. Agric. Sci. 1987, 109, 421–435. [Google Scholar] [CrossRef]
- Kutschera, L.; Lichtenegger, E.; Sobotik, M. Wurzelatlas der Kulturpflanzen Gemäßigter Gebiete mit Arten des Feldgemüsebaues; DLG-Verlag: Frankfurt am Main, Germany, 2009. [Google Scholar]
- Chołuj, D.; Karwowska, R.; Ciszewska, A.; Jasińska, M. Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol. Plant. 2008, 30, 679–687. [Google Scholar] [CrossRef]
- Barratt, G.E.; Sparkes, D.L.; McAusland, L.; Murchie, E.H. Anisohydric sugar beet rapidly responds to light to optimize leaf water use efficiency utilizing numerous small stomata. AoB Plants 2021, 13, plaa067. [Google Scholar] [CrossRef]
- Pidgeon, J.D.; Ober, E.S.; Qi, A.; Clark, C.J.A.; Royal, A.; Jaggard, K.W. Using multi-environment sugar beet variety trials to screen for drought tolerance. Field Crops Res. 2006, 95, 268–279. [Google Scholar] [CrossRef]
- Ober, E.S.; Le Bloa, M.; Clark, C.J.A.; Royal, A.; Jaggard, K.W.; Pidgeon, J.D. Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crops Res. 2005, 91, 231–249. [Google Scholar] [CrossRef]
- Ober, E.S.; Luterbacher, M.C. Genotypic variation for drought tolerance in Beta vulgaris. Ann. Bot. 2002, 89, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.J.D.; Bussell, J.S.; Stevens, M.; Back, M.A.; Sparkes, D.L. Physiological differences between sugar beet varieties susceptible, tolerant or resistant to the beet cyst nematode, Heterodera schachtii (Schmidt) under uninfested conditions. Eur. J. Agron. 2018, 98, 37–45. [Google Scholar] [CrossRef]
- AGES. Österreichische Beschreibende Sortenliste 2023. Landwirtschaftliche Pflanzenarten. Schriftenreihe 21/2023, ISSN 1560-635X. Available online: https://bsl.baes.gv.at (accessed on 13 August 2023).
- Bodner, G.; Alsalem, M.; Nakhforoosh, A.; Arnold, T.; Leitner, D. RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols. JoVE (J. Vis. Exp.) 2017, 126, e56251. [Google Scholar]
- Bodner, G.; Leitner, D.; Rewald, B.; Zhao, J.; Nakhforoosh, A.; Schnepf, A. Phenotyping-Modelling Interfaces to Advance Breeding for Optimized Crop Root Systems. In The Root Systems in Sustainable Agricultural Intensification; Rengel, Z., Djalovic, I., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 375–424. [Google Scholar]
- Schenk, H.J.; Jackson, R.B. The global biogeography of roots. Ecol. Monogr. 2002, 72, 311–328. [Google Scholar] [CrossRef]
- Reynolds, M.; Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 2016, 31, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Maseda, P.H.; Fernández, R.J. Stay wet or else: Three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 2006, 57, 3963–3977. [Google Scholar] [CrossRef]
- Trnka, M.; Olesen, J.E.; Kersebaum, K.C.; Skjelvåg, A.O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rötter, R.; Iglesias, A.N.A.; Orlandini, S. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011, 17, 2298–2318. [Google Scholar] [CrossRef]
- Cavus, Y.; Aksoy, H. Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. J. Hydrol. 2020, 584, 124312. [Google Scholar] [CrossRef]
- Nolz, R.; Cepuder, P.; Eitzinger, J. Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate. Theor. Appl. Climatol. 2016, 124, 315–324. [Google Scholar] [CrossRef]
- Comstock, J.P. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J. Exp. Bot. 2002, 53, 195–200. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Woodruff, D.R.; Marias, D.E.; Smith, D.D.; McCulloh, K.A.; Howard, A.R.; Magedman, A.L. Mapping ‘hydroscapes’ along the iso-to anisohydric continuum of stomatal regulation of plant water status. Ecol. Lett. 2016, 19, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Fitters, T.F.J.; Bussell, J.S.; Mooney, S.J.; Sparkes, D.L. Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes. Environ. Exp. Bot. 2017, 144, 61–67. [Google Scholar] [CrossRef]
- Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct. Plant Biol. 2012, 39, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 2002, 89, 925–940. [Google Scholar] [CrossRef]
- Palta, J.A.; Chen, X.; Milroy, S.P.; Rebetzke, G.J.; Dreccer, M.F.; Watt, M. Large root systems: Are they useful in adapting wheat to dry environments? Funct. Plant Biol. 2011, 38, 347–354. [Google Scholar] [CrossRef]
- Stevanato, P.; Trebbi, D.; Bertaggia, M.; Colombo, M.; Broccanello, C.; Concheri, G.; Saccomani, M. Root traits and competitiveness against weeds in sugar beet. Int. Sugar J. 2011, 113, 497. [Google Scholar]
- Rajabi, A.; Ober, E.S.; Griffiths, H. Genotypic variation for water use efficiency, carbon isotope discrimination, and potential surrogate measures in sugar beet. Field Crops Res. 2009, 112, 172–181. [Google Scholar] [CrossRef]
- Bloch, D.; Hoffmann, C.M.; Märländer, B. Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes. Eur. J. Agron. 2006, 24, 218–225. [Google Scholar] [CrossRef]
- Rytter, R.M. Water use efficiency, carbon isotope discrimination and biomass production of two sugar beet varieties under well-watered and dry conditions. J. Agron. Crop Sci. 2005, 191, 426–438. [Google Scholar] [CrossRef]
- Ebmeyer, H.; Fiedler-Wiechers, K.; Hoffmann, C.M. Drought tolerance of sugar beet–evaluation of genotypic differences in yield potential and yield stability under varying environmental conditions. Eur. J. Agron. 2021, 125, 126262. [Google Scholar] [CrossRef]
- Hochberg, U.; Rockwell, F.E.; Holbrook, N.M.; Cochard, H. Iso/anisohydry: A plant–environment interaction rather than a simple hydraulic trait. Trends Plant Sci. 2018, 23, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
Genotype | Origin | Nematode Resistance |
---|---|---|
Ferrara | Germany | - |
Gladiator | Belgium | 2 |
Inge | Netherlands | 6 |
Marino | Denmark | 2 |
Nauta | Denmark | - |
Strauss | Germany | 8 |
Cultivar | Leaf Area (cm) | Shoot Biomass (g) | Stomatal Conductance (mmol m−2 s−1) |
---|---|---|---|
Ferrara | 428.7 | 3.75 | 138.0 a |
Gladiator | 415 | 3.79 | 113.3 a |
Inge | 411.6 | 3.53 | 120.6 a |
Marino | 401.6 | 3.43 | 197.7 b |
Nauta | 361.9 | 3.34 | 151.5 ab |
Strauss | 348.6 | 3.24 | 136.4 a |
p-value | 0.383 | 0.364 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodner, G.; Alsalem, M. Sugar Beet Rooting Pattern Mediates Stomatal and Transpiration Responses to Progressive Water Stress. Agronomy 2023, 13, 2519. https://doi.org/10.3390/agronomy13102519
Bodner G, Alsalem M. Sugar Beet Rooting Pattern Mediates Stomatal and Transpiration Responses to Progressive Water Stress. Agronomy. 2023; 13(10):2519. https://doi.org/10.3390/agronomy13102519
Chicago/Turabian StyleBodner, Gernot, and Mouhannad Alsalem. 2023. "Sugar Beet Rooting Pattern Mediates Stomatal and Transpiration Responses to Progressive Water Stress" Agronomy 13, no. 10: 2519. https://doi.org/10.3390/agronomy13102519
APA StyleBodner, G., & Alsalem, M. (2023). Sugar Beet Rooting Pattern Mediates Stomatal and Transpiration Responses to Progressive Water Stress. Agronomy, 13(10), 2519. https://doi.org/10.3390/agronomy13102519