The Taxonomic Composition Changes of Bacteria and Fungi in Plant Residue Composts Induced by Biochar and Calcium Carbonate Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composts and Their Preparation
2.2. Laboratory Methods
2.3. DNA Extraction and Metagenomic Analysis
2.4. Statistical Processing
3. Results and Discussion
3.1. Characteristics of Chemical Properties of Composts
3.2. The Number of Bacteria and Fungi
4. Dominant and Frequently Encountered Bacteria
4.1. Phylum Level Analysis
4.2. Genus-Level Analysis
5. Fungal Community of Composts
5.1. Division and Class Level Analysis
5.2. Genus- and Species-Level Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudeyarov, V. Assessment of nutritional degradation of arable soils in Russia. Bull. Russ. Acad. Sci. 2015, 85, 771–775. [Google Scholar] [CrossRef]
- Semenov, V.; Kogut, B. Soil Organic Matter; GEOS: Moscow, Russia, 2015; 233p. [Google Scholar]
- Sokolov, M.S.; Spiridonov, Y.Y.; Glinushkin, A.P.; Toropova, E.Y. Organic fertilizer is an effective factor of soil improvement and an inductor of its suppressive capacity. Achiev. Sci. Technol. Agro-Ind. Complex 2018, 32, 4–12. [Google Scholar] [CrossRef]
- Romanov, E.; Nureeva, T.; Mukhortov, D. Production and Application of Unconventional Organic Fertilizers in Forest Nurseries; CIACR: Yoshkar-Ola, Russia, 2001; 153p. [Google Scholar]
- Smith, J.L.; Collins, H.P. Soil Microbiology, Ecology and Biochemistry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 483–486. [Google Scholar]
- Wang, S.P.; Wang, L.; Sun, Z.Y.; Wang, S.T.; Shen, C.H.; Tang, Y.Q.; Kida, K. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresour. Technol. 2021, 337, 125492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lü, F.; Shao, L.; He, P. The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour. Technol. 2014, 168, 252–258. [Google Scholar] [CrossRef]
- Ishola, T.M.; Ishola, E.T. Composting and Sustainable Development. In Encyclopedia of Sustainability in Higher Education; Leal Filho, W., Ed.; Springer: Cham, Switzerland, 2019; pp. 21–22. [Google Scholar]
- Omar, L.; Ahmed, O.H.; Jalloh, M.B.; Majid, N.M.A. Rice Husk Compost Production and Use in Mitigating Ammonia Volatilization from Urea. Sustainability 2021, 13, 1832. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Awasthi, S.K.; Wang, Q.; Wang, Z.; Lahori, A.H.; Ren, X.; Chen, H.; Wang, M.; Zhao, J.; Zhang, Z. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting. Bioresour. Technol. 2018, 251, 158–164. [Google Scholar] [CrossRef]
- Meng, L.Q.; Zhang, S.M.; Gong, H.N.; Zhang, X.C.; Wu, C.D.; Li, W.G. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose. Bioresour. Technol. 2018, 253, 197–203. [Google Scholar] [CrossRef]
- Jindo, K.; Sonoki, T.; Matsumoto, K.; Canellas, L.; Roig, A.; Sanchez-Monedero, M.A. Influence of biochar addition on the humic substances of composting manures. Waste Manag. 2016, 49, 545–552. [Google Scholar] [CrossRef]
- Guo, X.-X.; Liu, H.-T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Sun, X.; Zhang, H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Environ. Manag. 2021, 277, 111443. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Matsumoto, K.; Sonoki, T. The efficiency of a low dose of biochar in enhancing the aromaticity of humic-like substance extracted from poultry manure compost. Agronomy 2019, 9, 248. [Google Scholar] [CrossRef]
- Orlova, N.; Orlova, E.; Abakumov, E.; Smirnova, K.; Chukov, S. Humic Acids Formation during Compositing of Plant Remnants in Presence of Calcium Carbonate and Biochar. Agronomy 2022, 12, 2275. [Google Scholar] [CrossRef]
- Liu, Q.; He, X.; Wang, K.; Li, D. Biochar drives humus formation during composting by regulating the specialized metabolic features of microbiome. Chem. Eng. J. 2023, 458, 141380. [Google Scholar] [CrossRef]
- Wei, L.; Shutao, W.; Jin, Z.; Tong, X. Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour. Technol. 2014, 154, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wei, Z.; Wang, J. Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Manag. 2021, 131, 117–125. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, S.; Verma, S.; Sar, T.; Sarsaiya, S.; Ravindran, B.; Liu, T.; Sindhu, R.; Patel, A.; Binod, P.; et al. Production and beneficial impact of biochar for environmental application: A comprehensive review. Bioresour. Technol. 2021, 337, 125451. [Google Scholar] [CrossRef]
- Duan, Y.; Awasthi, M.K.; Wu, H.; Yang, J.; Li, Z.; Ni, X.; Zhang, J.; Zhang, Z.; Li, H. Biochar regulates bacterial-fungal diversity and associated enzymatic activity during sheep manure composting. Bioresour. Technol. 2022, 346, 126647. [Google Scholar] [CrossRef]
- Li, J.; Xing, W.; Bao, H.; Wang, J.; Tong, X.; Zhang, H.; Luo, W.; Wu, F. Impact of pine leaf biochar amendment on bacterial dynamics and correlation of environmental factors during pig manure composting. Bioresour. Technol. 2019, 293, 122031. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Liu, H.; Liu, T.; Awasthi, S.; Zhang, Z. Effect of biochar addition on the dynamics of antibiotic resistant bacteria during the pig manure composting. Sci. Total Environ. 2022, 814, 152688. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, Z.; Wang, H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. J. Environ. Manag. 2021, 295, 113136. [Google Scholar] [CrossRef]
- Li, J.; Bao, H.; Xing, W.; Yang, J.; Liu, R.; Wang, X.; Lv, L.; Tong, X.; Wu, F. Succession of fungal dynamics and their influence on physicochemical parameters during pig manure composting employing with pine leaf biochar. Bioresour. Technol. 2020, 297, 122377. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Chu, D.; You, X.; Li, Y.; Huang, C.; Zhang, J.; Zeng, X.; Yao, H.; Zhou, Z. Biochar improved the composting quality of seaweeds and cow manure mixture and altered the microbial community. Front. Microbiol. 2022, 13, 1064252. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhang, Y.; Qu, M.; Yin, Y.; Fan, K.; Hu, B.; Zhang, H.; Wei, M.; Ma, C. Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresour. Technol. 2019, 272, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, Y.; Li, T.; Chen, X.; Cheng, Y.; Sun, S.; Wang, Y.; Jiang, C.; Zang, H.; Li, C. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions. Bioresour. Technol. 2021, 320, 124402. [Google Scholar] [CrossRef]
- Orlova, N.; Abakumov, E.; Orlova, E.; Yakkonen, K.; Shahnazarova, V. Soil organic matter alteration under biochar amendment: Study in the incubation experiment on the Podzol soils of the Leningrad region (Russia). J. Soils Sediments 2019, 19, 2708–2716. [Google Scholar] [CrossRef]
- Alexandrova, L.N. Soil Organic Matter and Its Transformation Processes; Leningrad Nauka: Moscow, Russia, 1980; 287p. [Google Scholar]
- Kumada, K. Chemistry of Soil Organic Matter; Japan Scientific Societies Press and Elsevier: Tokyo, Japan, 1987; Volume 17, p. 240. [Google Scholar]
- Klucakova, M.; Kalina, M. Composition, particle size, charge and colloidal stability of pH-fractionated humic acids. J. Soils Sediments 2015, 15, 1900–1908. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification, 1st ed.; Taylor & Francis: London, UK, 1995; 325p. [Google Scholar] [CrossRef]
- Orlova, N.; Bakina, L.; Orlova, E. Methods of Studying the Content and Composition of Humus; Publishing House of St. Petersburg State University: Saint-Petersburg, Russia, 2007; 147p. [Google Scholar]
- Kostenko, I.; Abakumov, E. Characterization of Humic Acids in Mountainous Meadow Soils and Burozems of the Crimea Using 13C-NMR. Eurasian Soil Sc. 2018, 51, 1411–1418. [Google Scholar] [CrossRef]
- White, T.J.; Burns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Bates, S.T.; Berg-Lyons, D.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010, 5, 908–917. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; McDonald, D.; Muegge, B.D.; Pirrung, M.; Reeder, J.; Sevinsky, J.R.; Turnbaugh, P.J.; Walters, W.A.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Sörensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content // Kongelige Danske Videnskabernes Selskab. Biol. Krifter. Bd. 1948, 4, 1–34. [Google Scholar]
- Labutova, N.M. Methods of Studying Soil-Dwelling Microorganisms: A Textbook; Publishing House of St. Petersburg University: St. Petersburg, Russia, 2008; 49p. [Google Scholar]
- Orlova, E.E. Workshop on Agroecology; Publishing House of St. Petersburg University: St. Petersburg, Russia, 2011; 148p. [Google Scholar]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Sun, H.; Zhou, S.; Zou, G. Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresour. Technol. 2016, 200, 876–883. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. Rev. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- Su, M.; Dell’Orto, M.; Scaglia, B.; D’Imporzano, G.; Adani, F. Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions. Fermentation 2022, 8, 474. [Google Scholar] [CrossRef]
- Kulichevskaya, I.S.; Naumova, D.G.; Ivanova, A.A.; Rakitin, A.L.; Dedysh, S.N. Identification of chitinolytic potential in freshwater planctomycete Planctomicrobium Piriforme. Microbiology 2019, 88, 426–437. [Google Scholar] [CrossRef]
- Oviedo-Ocaña, E.R.; Torres, V.S.; Castellanos-Suarez, L.J.; Komilis, D. Effect of the addition of the Bacillus sp., Paenibacillus sp. bacterial strains on the co-composting of green and food waste. J. Environ. Chem. Eng. 2022, 10, 3. [Google Scholar] [CrossRef]
- Sebők, F.; Cserháti, M.; Dobolyi, C.; Kukolya, J.; Keresztényi, I.; Kriszt, B.; Szoboszlay, S. Survival of alkane-degrading microorganisms in biogas digestate compost in microcosm experiments. Appl. Ecol. Environ. Res. 2014, 12, 947–958. [Google Scholar] [CrossRef]
- Ki, B.M.; Kim, Y.M.; Jeon, J.M.; Ryu, H.W.; Cho, K.S. Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems. J. Microbiol. Biotechnol. 2017, 27, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Khaziev, F.H. Methods of Soil Enzymology; Nauka, M., Ed.; Soil Science Society of America: Madison, WI, USA, 2006; 252p. [Google Scholar]
- Tarayre, C.; Bauwens, J.; Brasseur, C.; Millet, C.; Guio, T.P.; Destain, J.; Vandenbol, M.; Portetelle, D.; De Pauw, E.; Haubruge, E.; et al. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis. Environ. Sci. Pollut. Res. Int. 2014, 22, 4369–4382. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.; Marques, A.G.; Rodrigues, D.; Silva, L.; Duarte, A.C.; Rocha-Santos, T.; Freitas, A.C. Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: A comparative study. Biodegradation 2011, 22, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Sikander, A.; Ayesha, T. Production of Polyphenol Oxidase from Rhizopus Arrhizus: Extracellular Polyphenol Oxidase by Rhizopus Arrhizus under Batch Culture; Lambert Academic Publishing—Business Information: Saarbruecken, Germany, 2016. [Google Scholar]
- Onianwah, F.; Stanley, H.O.; Eze, V.C.; Ifeanyi, V.O.; Ugboma, C. Evaluation of Enzymes Production Activity of Trichoderma, Aspergillus and Rhizopus Species in Paraeforce (Herbicide) Degradation. South Asian J. Res. Microbiol. 2020, 5, 1–7. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Sulej, J.; Swiderska-Burek, U.; Jarosz-Wilkolazka, A.; Paszczynski, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.B.; Kwiatos, N.; Szczesna-Antczak, M.; Bielecki, S. Laccases—enzymes with an unlimited potential. Biotechnol. Food Sci. 2017, 81, 41–70. [Google Scholar] [CrossRef]
- Söyler, B.; Ögel, Z.B. The Bifunctional Catalase-Phenol Oxidase of Mycothermus Thermophilum (MtCATPO) Increases the Antioxidant Capacities of its Ortho-Diphenolic Substrates and of Green and Black Tea Extracts. Turk. J. Agric. Food Sci. Technol. 2021, 9, 689–695. [Google Scholar] [CrossRef]
Plant Material t | C | N | Ash | C:N |
---|---|---|---|---|
% | ||||
Clover | 41.6 ± 0.8 | 1.88 ± 0.02 | 5.34 ± 0.01 | 22.1 |
Rye | 43.2 ± 1.6 | 1.12 ± 0.05 | 5.88 ± 0.03 | 38.6 |
Oats | 42.0 ± 1.0 | 0.61 ± 0.08 | 5.72 ± 0.04 | 68.4 |
Variants of Experiment | pH | Organic Substances, % | C:N | Humic Acid, % of Ctot. | |
---|---|---|---|---|---|
Oats | K | 7.34 ± 0.04 a | 37.8 ± 0.69 d | 39.2 ± 0.38 ef | 15.8 ± 0.22 a |
CaCO3 | 8.36 ± 0.07 d | 35.6 ± 0.22 c | 40.4 ± 0.44 f | 24.0 ± 1.04 c | |
BC | 7.96 ± 0.02 c | 36.6 ± 0.34 cd | 37.5 ± 0.36 e | 24.8 ± 0.46 c | |
Rye | K | 7.28 ± 0.11 b | 37.0 ± 0.82 d | 32.2 ± 0.36 d | 14.6 ± 0.38 a |
CaCO3 | 8.20 ± 0.04 d | 36.2 ± 0.70 cd | 34.8 ± 0.85 d | 19.5 ± 0.66 b | |
BC | 7.68 ± 0.05 b | 35.4 ± 0.72 c | 28.8 ± 0.60 c | 26.4 ± 0.46 c | |
Clover | K | 7.35 ± 0.03 a | 32.6 ± 0.58 b | 20.2 ± 0.72 ab | 18.8 ± 0.34 ab |
CaCO3 | 8.30 ± 0.06 d | 32.2 ± 0.74 b | 21.0 ± 0.75 b | 33.5 ± 0.55 d | |
BC | 7.64 ± 0.07 b | 30.6 ± 0.24 a | 19.6 ± 0.25 a | 34.4 ± 0.36 d |
Oats | Rye | Clover | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | Ca | BC | Raw | K | Ca | BC | Raw | K | Ca | BC | ||
Oats | Raw | 67 | 65 | 66 | 77 | 56 | 54 | 53 | 67 | 65 | 64 | 49 |
K | 28 | 29 | 41 | 30 | 38 | 32 | 40 | 35 | 36 | 43 | ||
Ca | 30 | 42 | 32 | 40 | 33 | 41 | 38 | 36 | 44 | |||
BC | 40 | 30 | 38 | 32 | 40 | 35 | 36 | 44 | ||||
Rye | Raw | 56 | 56 | 55 | 71 | 68 | 68 | 89 | ||||
K | 79 | 79 | 48 | 45 | 40 | 59 | ||||||
Ca | 39 | 48 | 44 | 43 | 49 | |||||||
BC | 48 | 41 | 38 | 54 | ||||||||
Clover | Raw | 57 | 57 | 77 | ||||||||
K | 83 | 86 | ||||||||||
Ca | 87 |
Oats | Rye | Clover | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | Ca | BC | Raw | K | Ca | BC | Raw | K | Ca | BC | ||
Oats | Raw | 43 | 39 | 38 | 42 | 25 | 14 | 18 | 14 | 40 | 24 | 29 |
K | 69 | 62 | 13 | 67 | 36 | 33 | 9 | 36 | 27 | 24 | ||
Ca | 86 | 19 | 21 | 27 | 25 | 0 | 31 | 20 | 24 | |||
BC | 24 | 13 | 25 | 15 | 0 | 30 | 13 | 27 | ||||
Rye | Raw | 24 | 21 | 20 | 14 | 27 | 22 | 25 | ||||
K | 58 | 69 | 8 | 34 | 19 | 24 | ||||||
Ca | 70 | 11 | 34 | 15 | 27 | |||||||
BC | 10 | 33 | 21 | 17 | ||||||||
Clover | Raw | 29 | 44 | 61 | ||||||||
K | 61 | 62 | ||||||||||
Ca | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlova, N.; Shakhnazarova, V.; Orlova, E.; Bityutskii, N.; Smirnova, K.; Xu, S.; Kichko, A.; Aksenova, T. The Taxonomic Composition Changes of Bacteria and Fungi in Plant Residue Composts Induced by Biochar and Calcium Carbonate Application. Agronomy 2023, 13, 2521. https://doi.org/10.3390/agronomy13102521
Orlova N, Shakhnazarova V, Orlova E, Bityutskii N, Smirnova K, Xu S, Kichko A, Aksenova T. The Taxonomic Composition Changes of Bacteria and Fungi in Plant Residue Composts Induced by Biochar and Calcium Carbonate Application. Agronomy. 2023; 13(10):2521. https://doi.org/10.3390/agronomy13102521
Chicago/Turabian StyleOrlova, Nataliya, Vlada Shakhnazarova, Elena Orlova, Nikolai Bityutskii, Kseniia Smirnova, Shaohui Xu, Arina Kichko, and Tatiana Aksenova. 2023. "The Taxonomic Composition Changes of Bacteria and Fungi in Plant Residue Composts Induced by Biochar and Calcium Carbonate Application" Agronomy 13, no. 10: 2521. https://doi.org/10.3390/agronomy13102521
APA StyleOrlova, N., Shakhnazarova, V., Orlova, E., Bityutskii, N., Smirnova, K., Xu, S., Kichko, A., & Aksenova, T. (2023). The Taxonomic Composition Changes of Bacteria and Fungi in Plant Residue Composts Induced by Biochar and Calcium Carbonate Application. Agronomy, 13(10), 2521. https://doi.org/10.3390/agronomy13102521