Temperature and Soil Moisture Drive Coumestrol Concentration in Annual Medicago spp. in the Presence but Not Absence of Phoma Black Stem and Leaf Spot (Phoma medicaginis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Annual Medicago Species and P. medicaginis Isolate
2.2. Inoculum Preparation and Inoculation Method
2.3. Disease Assessment
2.4. Temperature and Moisture Regimes
2.5. Phytoestrogen Assessment
2.5.1. Chemicals and Reagents
2.5.2. Quantitation of Phytoestrogens
2.5.3. GC–MS Conditions
2.6. Experimental Design and Statistical Analyses
3. Results
3.1. Disease Expression
3.2. Phytoestrogen Expression
3.2.1. Main Treatment Effects
3.2.2. Two-Way Interaction Effects
3.2.3. Three-Way Interaction Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, M.J.; Delaney, R.H.; Groose, R.W.; Krall, J.M. Performance of annual medic species (Medicago spp.) in southeastern Wyoming. Agron. J. 2001, 93, 1249–1256. [Google Scholar] [CrossRef]
- Barbetti, M.J.; Riley, I.T.; You, M.P.; Li, H.; Sivasithamparam, K. The association of necrotrophic fungal pathogens and plant parasitic nematodes with the loss of productivity of annual medic-based pastures in Australia and options for their management. Australas. Plant Pathol. 2006, 35, 691–706. [Google Scholar] [CrossRef]
- Puschner, B. Anti-nutritional factors in alfalfa hay. In Proceedings of the 29th National Alfalfa Symposium, Las Vegas, NV, USA, 11–12 December 2000; The California Alfalfa Workgroup and The Alfalfa Council: Las Vegas, NV, USA, 2000; pp. 157–162. [Google Scholar]
- Barbetti, M.J. Subterranean clover foliage fungi as root pathogens. Australas. Plant Pathol. 1984, 13, 38–40. [Google Scholar] [CrossRef]
- Barbetti, M.J. Effects of temperature and humidity on disease caused by Phoma medicaginis, resistance in some Medicago cultivars and the incidence of seed-borne inoculum. Aust. J. Exp. Agric. 1987, 27, 851–856. [Google Scholar] [CrossRef]
- Barbetti, M.J.; You, M.; Jones, R.A.C. Medicago truncatula and other annual Medicago spp.—Interactions with root and foliar fungal, oomycete, and viral pathogens. In The Model Legume Medicago truncatula; De Bruijn, F.J., Liu, D.Y., Eds.; Wiley: Chichester, UK, 2020; pp. 293–306. [Google Scholar]
- Omidvari, M.; Flematti, G.; You, M.P.; Abbaszadeh-Dahaji, P.; Barbetti, M.J. Phoma medicaginis isolate differences determine disease severity and phytoestrogen production in annual Medicago spp. Plant Dis. 2021, 105, 2851–2860. [Google Scholar] [CrossRef] [PubMed]
- Barbetti, M.J. Response of Medicago cultivars to fungal root pathogens associated with Trifolium subterraneum. Plant Prot. Q. 1989, 4, 1–3. [Google Scholar]
- You, M.P.; Sivasithamparam, K.; Riley, I.T.; Barbetti, M.J. The occurrence of root-infecting fungi and parasitic nematodes in annual Medicago spp. in Western Australian pastures. Aust. J. Agric. Res. 2000, 51, 435–444. [Google Scholar] [CrossRef]
- Barbetti, M.J. Resistance in annual Medicago spp. to Phoma medicaginis and Leptosphaerulina trifolii and its relationship to induced production of a phytoestrogen. Plant Dis. 2007, 91, 239–244. [Google Scholar] [CrossRef]
- Barbetti, M.J. Relative resistance, associated yield losses and phytoestrogen production from fungal foliar diseases in new and old annual Medicago cultivars. Aust. J. Agric. Res. 1995, 46, 441–450. [Google Scholar] [CrossRef]
- Adams, N.R. Detection of the effects of phytoestrogens on sheep and cattle. J. Anim. Sci. 1995, 73, 1509–1515. [Google Scholar] [CrossRef]
- Wasserman, M.D.; Milton, K.; Chapman, C.A. The roles of phytoestrogens in primate ecology and evolution. Int. J. Primatol. 2013, 34, 861–878. [Google Scholar] [CrossRef]
- Deavours, B.E.; Dixon, R.A. Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 2005, 138, 2245–2259. [Google Scholar] [CrossRef] [PubMed]
- Hloucalová, P.; Skládanka, J.; Horký, P.; Klejdus, B.; Pelikán, J.; Knotová, D. Determination of phytoestrogen content in fresh-cut legume forage. Animals 2016, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.F.M. Fertility of Herbivores Consuming Phytoestrogen-containing Medicago and Trifolium Species. Agriculture 2016, 6, 35. [Google Scholar] [CrossRef]
- Croker, K.P.; Barbetti, M.J.; Nichols, P.G.H. Incidence of coumestrol in medic pastures in Western Australia. Proc. Aust. Soc. Anim. Prod. 1994, 20, 416. [Google Scholar]
- Croker, K.P.; Nichols, P.G.H.; Barbetti, M.J.; Adams, N. Sheep Infertility from Pasture Legumes; Farmnote No. 6/94; Department of Agriculture Western Australia: Perth, WA, Australia, 1994.
- Croker, K.P.; Nichols, P.G.H.; Barbetti, M.J.; Adams, N. Sheep Infertility from Pasture Legumes; Farmnote No. 79/99; Department of Agriculture Western Australia: Perth, WA, Australia, 1999.
- Croker, K.P.; Nichols, P.G.H.; Barbetti, M.J.; Adams, N. Sheep Infertility from Pasture Legumes; Farmnote No. 41/2005; Department of Agriculture Western Australia: Perth, WA, Australia, 2005.
- Sirtori, C.R.; Arnoldi, A.; Johnson, S.K. Phyto-oestrogens: End of a tale? Ann. Med. 2005, 37, 423–438. [Google Scholar] [CrossRef]
- Fields, R.L.; Graham, K.B.; Alan, G.; Jenny, Z.; Derrick, J.M. Alfalfa coumestrol content in response to development stage, fungi, aphids, and cultivar. Ecol. Crop Physiol. 2018, 110, 910–921. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.M.; Millington, A.J. Wether bioassay of annual pasture legumes. IV. The oestrogenic activity of annual medic pastures. Aust. J. Agric. Res. 1965, 16, 927–935. [Google Scholar] [CrossRef]
- Francis, C.M.; Millington, A.J. The presence of methylated coumestans in annual Medicago species: Response to a fungal pathogen. Aust. J. Agric. Res. 1971, 22, 75–80. [Google Scholar] [CrossRef]
- Marshall, T.; Parkin, R.J. Phosphate applications affect the coumestrol level of medics. J. Agric. West. Aust. 1970, 11, 8. [Google Scholar]
- Fields, R.L.; Moot, D.J.; Barrell, G.K. Coumestrol content of lucerne under drought stress. In Proceedings of the 18th Australian Agronomy Conference, Ballarat, Australia, 24–28 September 2017. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Saviranta, N.M.M.; Anttonen, M.J.; von Wright, A.; Karjalainen, R.O. Red clover (Trifolium pratense L.) isoflavones: Determination of concentrations by plant stage, flower colour, plant part and cultivar. J. Sci. Food Agric. 2008, 88, 125–132. [Google Scholar] [CrossRef]
- Tsukamoto, C.; Shimada, S.; Igita, K.; Kudou, S.; Kokubun, M.; Okubo, K.; Kitamura, K. Factors affecting isoflavones content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 1995, 43, 1184–1192. [Google Scholar] [CrossRef]
- Chennupati, P.; Seguin, P.; Liu, W. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations. J. Agric. Food Chem. 2011, 59, 13081–13088. [Google Scholar] [CrossRef]
- Lozovaya, V.V.; Lygin, A.V.; Ulanov, A.V.; Nelson, R.L.; Dayde, J.; Widholm, J.M. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 2005, 45, 1934–1940. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Ohta, T.; Uto, T.; Tanaka, H. Effective methods for increasing coumestrol in soybean sprouts. PLoS ONE 2021, 16, e0260147. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.E.; Lee, E.A.; Woodrow, L.; Seguin, P.; Kumar, J.; Rajcan, J.; Ablett, G.R. Association of seed and agronomic traits with isoflavone levels in soybean. Can. J. Plant Sci. 2009, 89, 477–484. [Google Scholar] [CrossRef]
- Tucak, M.; Cupi’c, T.; Horvat, D.; Popovi’c, S.; Krizmani´c, G.; Ravli´c, M. Variation of phytoestrogen content and major agronomic traits in alfalfa (Medicago sativa L.) populations. Agronomy 2020, 10, 87. [Google Scholar] [CrossRef]
- Fields, R.L.; Sedcole, J.R.; Barrell, G.K.; Moot, D.J. Prediction of coumestrol content in unirrigated lucerne crops using weather variables. N. Z. J. Agric. Res. 2018, 62, 528–542. [Google Scholar] [CrossRef]
- Adams, N.R. Phytoestrogens. In Toxicants of Plant Origin; Cheeke, P.R., Ed.; CRC Press: Boca Raton, FL, USA, 1989; Volume 4, pp. 25–32. [Google Scholar]
- Omidvari, M.; Flematti, G.; You, M.P.; Abbaszadeh-Dahaji, P.; Barbetti, M.J. Phoma black stem severity and phytoestrogen production in annual Medicago spp. is primarily determined by interaction of cultivar and pathogen isolate. Plant Pathol. 2022, 105, 2851–2860. [Google Scholar] [CrossRef]
- Dhingra, O.D.; Sinclair, J.B. Basic Plant Pathology Methods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Chihaoui, S.A.; Djébali, N.; Mrabet, M.; Barhoumi, F.; Mhamdi, R.; Mhadhbi, H. Phoma medicaginis colonizes Medicago truncatula root nodules and affects nitrogen fixation capacity. Eur. J. Plant Pathol. 2014, 141, 375–383. [Google Scholar] [CrossRef]
- Mhadhbi, H.; Jebara, M.; Limam, F.; Huguet, T.; Elarbi Aouani, M. Interaction between Medicago truncatula lines and Sinorhizobium meliloti strains for symbiotic efficiency and nodule antioxidant activities. Physiol. Plant 2005, 124, 4–11. [Google Scholar] [CrossRef]
- Omidvari, M.; Flematti, G.; You, M.P.; Abbaszadeh-Dahaji, P.; Barbetti, M.J. Sequential infections by 32 isolates of Phoma medicaginis increase production of phytoestrogens in Medicago polymorpha var. brevispina. Crop Pasture Sci. 2022; in press. [Google Scholar] [CrossRef]
- Ellwood, S.; Kamphuis, L.G.; Pfaff, T.; Oliver, R.P.; Samac, D.A.; Foster-Hartnett, D.; Tivoli, B.; Onfroy, C.; Moussart, A. Inoculation and growth with foliar pathogenic fungi. In The Medicago truncatula Handbook; Mathesius, U., Journet, E.P., Sumner, L.W., Eds.; The Samuel Roberts Noble Foundation: Ardmore, PA, USA, 2007; pp. 1–14. [Google Scholar]
- Barbetti, M.J. Effects of temperature on development and progression in rape of crown canker caused by Leptosphaeria maculans. Aust. J. Exp. Agric. 1975, 15, 705–708. [Google Scholar] [CrossRef]
- You, M.P.; Barbetti, M.J. Severity of phytophthora root rot and pre-emergence damping-off in subterranean clover influenced by moisture, temperature, nutrition, soil type, cultivar and their interactions. Plant Pathol. 2017, 66, 1162–1181. [Google Scholar] [CrossRef]
- Barbetti, M.J.; Fang, C.S. Relationship between Phoma black stem severity and herbage and seed yield and coumestrol content in three Medicago polymorpha var. brevispina cultivars. Aust. J. Agric. Res. 1991, 42, 409–415. [Google Scholar] [CrossRef]
- Ferrer, I.; Barber, L.B.; Thurman, E.M. Gas chromatographic-mass spectrometric fragmentation study of phytoestrogens as their trimethylsilyl derivatives: Identification in soy milk and wastewater samples. J. Chromatogr. 2009, 1216, 6024–6032. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.H.; Chiang, C.C. Derivatization procedures for the detection of estrogenic chemicals by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Barbetti, M.J. Resistance in annual Medicago species to Phoma medicaginis and Leptosphaerulina trifolii under field conditions. Aust. J. Exp. Agric. 1995, 35, 209–214. [Google Scholar] [CrossRef]
- Barbetti, M.J.; Nichols, P.G.H. Effect of Phoma medicaginis and Leptosphaerulina trifolii on herbage and seed yield and coumestrol content of annual Medicago species. Phytophylactica 1991, 23, 223–228. [Google Scholar]
- Castell-Miller, C.V.; Zeyen, R.J.; Samac, D.A. Infection and development of Phoma medicaginis on moderately resistant and susceptible alfalfa genotypes. Can. J. Plant Pathol. 2007, 29, 290–298. [Google Scholar] [CrossRef]
- Djebali, N. Aggressiveness and host range of Phoma medicaginis isolated from Medicago species growing in Tunisia. Phytopathol. Mediterr. 2013, 51, 3–15. [Google Scholar]
- Rodriguez, R.D.P.; Leath, K.T. Pathogenicity of Phoma medicaginis var. medicaginis to crowns of alfalfa. Plant Dis. 1992, 76, 1237–1240. [Google Scholar] [CrossRef]
- Wyse, J.M.; Latif, S.; Gurusinghe, S.; Berntsen, E.D.; Weston, L.A.; Stephen, C.P. Characterization of phytoestrogens in Medicago sativa L. and grazing beef cattle. Metabolites 2021, 11, 550. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Barbetti, M.J. Influence of Climate Change on Plant Disease Infections and Epidemics Caused by Viruses and Bacteria; CAB Reviews: Perspectives Agric., Veterinary Sci., Nutrition and Natural Resources; CABI: Wallingford, UK, 2012; Volume 7, pp. 1–31. [Google Scholar]
- Chennupati, P.; Seguin, P.; Chamoun, R.; Jabaji, S. Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. J. Agric. Food Chem. 2012, 60, 12421–12427. [Google Scholar] [CrossRef]
- Barbetti, M.J. Resistance in annual Medicago species to Phoma medicaginis under controlled environment and field conditions. Aust. J. Exp. Agric. 1990, 30, 209–214. [Google Scholar] [CrossRef]
- Barbetti, M.J. Strategies for control of Phoma black stem in annual Medicago species. Aust. J. Exp. Agric. 1989, 29, 635–640. [Google Scholar] [CrossRef]
- Barbetti, M.J.; Nicholas, D.A. Effect of Phoma black stem and pepper spot diseases on yield, regeneration, sward composition and phyto-oestrogen levels in grazed annual medic pastures. In Proceedings of the Australasian Plant Pathology Society: 11th Biennial Conference Proceedingsel, Perth, Australia, 29 September–2 October 1997; p. 65. [Google Scholar]
- Ramòn, J.P.; Valderràbano, J.; Folch, J. Reproductive performance of Rasa Aragonesa ewes mated on lucerne (Medicago sativa ‘Aragon’) pastures. Small Rumin. Res. 1993, 11, 323–329. [Google Scholar] [CrossRef]
- Tripathi, P.; Rabara, R.C.; Reese, R.N.; Miller, M.A.; Rohila, J.S.; Subramanian, S.; Shen, Q.J.; Morandi, D.; Bücking, H.; Shulaev, V.; et al. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genom. 2016, 9, 102. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, J.J.; Guttikonda, S.K.; Tran, L.-S.P.; Aldrich, D.L.; Zhong, R.; Yu, O.; Nguyen, H.T.; Sleper, D.A. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiol. 2010, 51, 936–948. [Google Scholar] [CrossRef]
- Linić, I.; Šamec, D.; Grúz, J.; Vujčić Bok, V.; Strnad, M.; Salopek Sondi, B. Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among brassicaceae. Plants 2019, 8, 155. [Google Scholar] [CrossRef]
- Qin, S.S.; Chen, S.Q.; Huang, L.Q. Effect of water stress on relationship of endogenous phytohormone and active compound content in roots of Scutellaria baicalensis Georgi. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 99–101. [Google Scholar]
Source of Variation | m.s. | v.r | F pr. | LSD |
---|---|---|---|---|
%LDI | 32,176.9 | 1485.3 | <0.001 | 1.68 |
%PDI | 17,160.2 | 759.0 | <0.001 | 1.72 |
%LDS | 17,160.2 | 748.7 | <0.001 | 1.73 |
%PDS | 28,520.8 | 1415.0 | <0.001 | 1.62 |
%LYS | 725.2 | 115.7 | <0.001 | 0.90 |
12.5/9.5 °C | 20/17 °C | 27/24 °C | ||||
---|---|---|---|---|---|---|
Source of Variation | F. pr a | LSD b | F. pr | LSD | F. pr | LSD |
Species | <0.001 | 12.3 | <0.001 | 26.3 | <0.001 | 31.3 |
Inoculation | <0.001 | 12.2 | <0.001 | 29.8 | <0.001 | 28.4 |
Moisture Level | 0.351 ns | 20.4 | <0.001 | 4.56 | <0.001 | 20.1 |
Species x Inoculation | <0.001 | 14.1 | <0.001 | 33.3 | <0.001 | 34.6 |
Species x Moisture Level | 0.744 ns | 21.6 | <0.001 | 25.5 | <0.001 | 30.5 |
Inoculation x Moisture Level | 0.148 ns | 22.1 | <0.001 | 29.9 | <0.001 | 31.9 |
Species x Inoculation x Moisture Level | 0.46 ns | 30.8 | <0.001 | 33.6 | <0.01 | 41.8 |
Temperature (°C) | ||||
---|---|---|---|---|
Medicago Species | Inoculation | Moisture Level (WHC%) | 20/17 °C | 27/24 °C |
Coumestrol Production mg kg−1 | ||||
M. rugosa cv. Paraponto | Control | 50 | 5.0 | 38.9 |
100 | 34.4 | 9.4 | ||
Inoculated | 50 | 194 | 436 | |
100 | 134 | 126 | ||
M. scutellata cv. Sava | Control | 50 | 1.6 | 1.8 |
100 | 14.6 | 11.5 | ||
Inoculated | 50 | 562 | 600 | |
100 | 320 | 478 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omidvari, M.; Flematti, G.R.; You, M.P.; Abbaszadeh-Dahaji, P.; Barbetti, M.J. Temperature and Soil Moisture Drive Coumestrol Concentration in Annual Medicago spp. in the Presence but Not Absence of Phoma Black Stem and Leaf Spot (Phoma medicaginis). Agronomy 2022, 12, 1863. https://doi.org/10.3390/agronomy12081863
Omidvari M, Flematti GR, You MP, Abbaszadeh-Dahaji P, Barbetti MJ. Temperature and Soil Moisture Drive Coumestrol Concentration in Annual Medicago spp. in the Presence but Not Absence of Phoma Black Stem and Leaf Spot (Phoma medicaginis). Agronomy. 2022; 12(8):1863. https://doi.org/10.3390/agronomy12081863
Chicago/Turabian StyleOmidvari, Mahtab, Gavin R. Flematti, Ming Pei You, Payman Abbaszadeh-Dahaji, and Martin J. Barbetti. 2022. "Temperature and Soil Moisture Drive Coumestrol Concentration in Annual Medicago spp. in the Presence but Not Absence of Phoma Black Stem and Leaf Spot (Phoma medicaginis)" Agronomy 12, no. 8: 1863. https://doi.org/10.3390/agronomy12081863
APA StyleOmidvari, M., Flematti, G. R., You, M. P., Abbaszadeh-Dahaji, P., & Barbetti, M. J. (2022). Temperature and Soil Moisture Drive Coumestrol Concentration in Annual Medicago spp. in the Presence but Not Absence of Phoma Black Stem and Leaf Spot (Phoma medicaginis). Agronomy, 12(8), 1863. https://doi.org/10.3390/agronomy12081863