The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Experimental Area
2.2. Experimental Variants and Mulch Materials Used
2.3. Measurement of Meteorological Data, Soil Temperature and Soil Moisture
2.4. Assessment of Physical and Chemical Soil Properties
2.5. Assessment of Grape Yield
2.6. Assessment of the Main Qualitative Parameters of Grapes
2.7. Statistical Analysis
3. Results and Discussion
Practical Implications of This Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions: A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special Report: Global Warming of 1.5 °C; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 1 July 2022).
- Buesa, I.; Mirás-Avalos, J.M.; De Paz, J.M.; Visconti, F.; Sanz, F.; Yeves, A.; Guerra, D.; Intrigliolo, D.S. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. Eur. J. Agron. 2021, 123, 126198. [Google Scholar] [CrossRef]
- Li, R.; Hou, X.; Jia, Z.; Han, Q.; Ren, X.; Yang, B. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manag. 2013, 116, 101–109. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Mei, X.; Yan, C.; Garré, S. Modelling soil water dynamic in rain-fed spring maize field with plastic mulching. Agric. Water Manag. 2018, 198, 19–27. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Turner, N.C.; Gong, Y.H.; Li, F.M.; Fang, C.; Ge, L.J.; Ye, J.S. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Pan, H.J.; Zhang, K.Y.; Sun, W.; Wang, X.J.; Gao, H. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Buchas, G.D. Soil temperature regime. In Soil and Environmental Analysis, Physical Methods, 2nd ed.; Smith, K.A., Mullins, E.D., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 539–594. [Google Scholar]
- Lehnert, M. Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature. Acta Univ. Palacki. Olomuc. Geogr. 2014, 45, 5–21. Available online: http://geography.upol.cz/geographica-45-1a (accessed on 1 July 2022).
- Davidson, E.; Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Gao, X.; Ren, K.; Wu, P. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. J. Hydrol. 2018, 558, 432–441. [Google Scholar] [CrossRef]
- Mundy, D.C.; Agnew, R.H. Effects of mulching with vineyard and winery waste on soil fungi and Botrytis bunch rot in Marlborough vineyards. N. Z. Plant Prot. 2002, 55, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Bajgai, Y.; Hulugalle, N.; Kristiansen, P.; Mchenry, M.; Cowie, A. Residue incorporation mitigates tillage-induced loss of soil carbon in laboratory microcosms. Soil Use Manag. 2014, 30, 328–336. [Google Scholar] [CrossRef]
- Jiménez, M.N.; Fernández-Ondoño, E.; Ripoll, M.Á.; Castro-Rodríguez, J.; Huntsinger, L.; Navarro, F.B. Stones and organic mulches improve the Quercus ilex L. afforestation success under Mediterranean climatic conditions. Land Degrad. Dev. 2016, 27, 357–365. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Zhao, X.; Wu, P.T.; Horwath, W.R.; Li, H.B.; Jing, Z.L.; Chen, X.L. Simulated study on effects of ground managements on soil water and available nutrients in jujube orchards. Land Degrad. Dev. 2016, 27, 35–42. [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; Prats, S.A.; Keizer, J.J.; De Lima, J.L.M.P. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Mwango, S.B.; Msanya, B.M.; Mtakwa, P.W.; Kimaro, D.N.; Deckers, J.; Poesen, J. Effectiveness of mulching under Miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains, Tanzania. Land Degrad. Dev. 2016, 27, 1266–1275. [Google Scholar] [CrossRef]
- Ruy, S.; Findeling, A.; Chadoeuf, J. Effect of mulching techniques on plot scale runoff: FDTF modeling and sensitivity analysis. J. Hydrol. 2006, 326, 277–294. [Google Scholar] [CrossRef]
- Tourte, L.; Smith, R.; Bettiga, L.; Bensen, T.; Smith, J.; Salm, D. Post-emergence herbicides are cost effective for vineyard floor management on the Central Coast. Calif. Agric. 2008, 62, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Fracchiolla, M.; Al Chami, Z.; Camposero, S.; Lasorella, C.; Pacifico, A.; Aly, A.; Montemurro, P. Effects of mulching materials on soils and performance of cv. Nero di Troia grapevines in the Puglia Region, Southeastern Italy. Am. J. Enol. Vitic. 2012, 63, 269–276. [Google Scholar] [CrossRef]
- ISA. Proper Mulching Techniques; International Society of Arboriculture: Champaign, IL, USA, 2005; Available online: https://sswm.info/sites/default/files/reference_attachments/ISA%202005%20Proper%20Mulching%20Techniques.pdf (accessed on 1 July 2022).
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Ziegler, B. Bodenpflege im Weinbau: Weinbau-Informationen: Ausgewählte Themen für die Praxis; Verlag Rheinland-Pfalz, Dienstleistungszentrum Ländlicher Raum: Neustadt an der Weinstraße, Germany, 2012; p. 72. (In German) [Google Scholar]
- Kjeldahl, J.G.C.T. A new method for the estimation of nitrogen in organic compounds. Z. Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and organic Matter. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed.; Sparks, D.L., Page, P.A.A.L., Helmke, R.H., Loeppert, P.N., Soltanpour, M.A., Tabatabai, C.T., Johnston, A.M., Sumner, E., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 961–1010. [Google Scholar] [CrossRef]
- Kopecký, J. Soil Science. Agrophysical Part, 1st ed.; Ministry of Agriculture: Prague, Czech Republic, 1928; Number 73; p. 278. (In Czech) [Google Scholar]
- Ham, J.M.; Kluitenberg, G.J.; Lamont, W.J. Optical Properties of Plastic Mulches Affect the Field Temperature Regime. J. Am. Soc. Hortic. Sci. 1993, 118, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Fourie, J.C.; Freitag, K. Soil management in the Breede River Valley wine grape region, South Africa. 2. Soil temperature. S. Afr. J. Enol. Vitic. 2010, 31, 165–168. [Google Scholar] [CrossRef]
- Bussière, F.; Cellier, P. Modification of the soil temperature and water content regimes by a crop residue mulch: Experiment and modelling. Agric. For. Meteorol. 1994, 68, 1–28. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Descheemaeker, K.; Giller, K.E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S. Integrated soil fertility management in sub-Saharan Africa: Unravelling local adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, R.; Ingwersen, J.; Streck, T. The effect of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Tillage Res. 2007, 96, 52–63. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Cantero-Martinez, C.; Arrúe, J.L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 2008, 72, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.M.; Munkholm, L.J.; Olesen, J.E. N-utilization in non-inversion tillage systems. Soil Tillage Res. 2011, 113, 55–60. [Google Scholar] [CrossRef]
- Yao, S.; Merwin, I.A.; Bird, G.W.; Abawi, G.W.; Thies, J.E. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant Soil 2005, 271, 377–389. [Google Scholar] [CrossRef]
- Neilsen, G.; Forge, T.; Angers, D.; Neilsen, D.; Hogue, E. Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant Soil 2014, 378, 325–335. [Google Scholar] [CrossRef]
- Chan, K.Y.; Fahey, D.J.; Newell, M.; Barchia, I. Using composted mulch in vineyards—Effects on grape yield and quality. Int. J. Fruit. Sci. 2010, 10, 441–453. [Google Scholar] [CrossRef]
- Sales, B. Impact of Organic Mulch on Vineyard Soil Moisture Retention, Grapevine Growth and Nutrition. Undergraduate Res. Scholar Thesis, Texas A&M University, College Station, Texas, 2015. Available online: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/154480/SALES-THESIS-2015.pdf?sequence=1 (accessed on 1 July 2022).
- Chan, K.Y.; Fahey, D.J. Effect of composted mulch application on soil and wine grape potassium status. Soil Res. 2011, 49, 455–461. [Google Scholar] [CrossRef]
- Coventry, J.M.; Fisher, K.H.; Strommer, J.N.; Reynolds, A.G. Reflective mulch to enhance berry quality in ontario wine grapes. Acta Hortic. 2005, 689, 95–102. [Google Scholar] [CrossRef]
- Smart, R.E.; Smith, S.M.; Winchester, R.V. Light quality and quantity effects on fruit ripening for Cabernet Sauvignon. Am. J. Enol. Vitic. 1988, 39, 250–258. [Google Scholar]
- Mejias-Barrera, P. Effect of Crushed Glass, Used as a Reflective Mulch, on Pinot Noir Performance. Master’s Thesis, Lincoln University, Christchurch, New Zealand, 2012. Available online: https://researcharchive.lincoln.ac.nz/bitstream/handle/10182/5054/Mejias-Barrera_mhortsc.pdf?sequence=3&isAllowed=y (accessed on 24 July 2022).
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
Month | Variant | Average Value of the Observed Trait | |||||
---|---|---|---|---|---|---|---|
Soil Temperature (°C) | Soil Moisture Level (wt%) | ||||||
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
January | CS | 2.38 ± 1.19 | 1.61 ± 1.02 | 1.56 ± 0.36 | 35.49 ± 0.96 | 35.39 ± 0.85 | 41.07 ± 0.72 |
CO | 2.45 ± 1.30 | 1.87 ± 1.06 | 1.31 ± 0.38 | 30.14 ± 0.50 | 28.12 ± 1.23 | 28.13 ± 0.39 | |
CWC | 2.62 ± 0.84 | 2.27 ± 0.96 | 2.19 ± 0.28 | 29.98 ± 0.48 | 27.80 ± 1.77 | 28.43 ± 0.60 | |
February | CS | 2.61 ± 1.14 | 2.29 ± 0.95 | 4.09 ± 1.01 | 34.41 ± 0.57 | 35.78 ± 0.61 | 42.37 ± 0.66 |
CO | 2.87 ± 1.26 | 2.53 ± 1.09 | 4.36 ± 1.20 | 28.95 ± 0.19 | 29.09 ± 0.59 | 28.48 ± 0.42 | |
CWC | 2.74 ± 1.23 | 2.86 ± 1.07 | 4.72 ± 0.95 | 29.42 ± 0.32 | 29.44 ± 0.48 | 29.31 ± 0.38 | |
March | CS | 6.20 ± 1.16 | 6.29 ± 1.04 | 6.07 ± 1.29 | 33.57 ± 0.71 | 36.23 ± 0.39 | 42.57 ± 0.72 |
CO | 6.28 ± 1.17 | 6.60 ± 0.84 | 6.69 ± 1.32 | 28.32 ± 1.44 | 27.94 ± 0.69 | 28.32 ± 0.21 | |
CWC | 6.42 ± 1.86 | 6.94 ± 0.98 | 6.73 ± 1.13 | 27.02 ± 0.42 | 28.37 ± 0.76 | 29.10 ± 0.60 | |
April | CS | 10.81 ± 2.05 | 10.37 ± 1.48 | 9.36 ± 1.39 | 36.49 ± 0.87 | 33.90 ± 1.56 | 40.40 ± 0.94 |
CO | 11.26 ± 2.08 | 10.94 ± 1.57 | 11.08 ± 2.03 | 27.36 ± 2.75 | 22.61 ± 1.65 | 27.26 ± 0.43 | |
CWC | 11.06 ± 2.85 | 11.23 ± 1.66 | 10.64 ± 1.93 | 27.25 ± 2.47 | 21.45 ± 1.83 | 23.89 ± 2.62 | |
May | CS | 17.07 ± 2.21 | 13.01 ± 2.01 | 12.97 ± 1.22 | 37.31 ± 1.46 | 37.39 ± 3.69 | 39.01 ± 3.66 |
CO | 19.18 ± 2.35 | 14.07 ± 2.45 | 15.01 ± 1.21 | 20.89 ± 0.38 | 22.91 ± 4.61 | 22.92 ± 1.57 | |
CWC | 17.23 ± 1.49 | 13.51 ± 1.74 | 14.36 ± 1.03 | 20.23 ± 0.96 | 21.76 ± 5.46 | 19.59 ± 2.26 | |
June | CS | 19.44 ± 0.98 | 19.36 ± 1.33 | 17.26 ± 1.58 | 31.17 ± 2.60 | 42.24 ± 1.18 | 46.71 ± 1.96 |
CO | 22.32 ± 1.21 | 23.07 ± 1.79 | 18.43 ± 1.48 | 20.84 ± 0.80 | 29.94 ± 1.51 | 24.94 ± 4.10 | |
CWC | 20.85 ± 1.09 | 20.71 ± 1.66 | 17.74 ± 1.47 | 18.38 ± 0.09 | 25.50 ± 3.68 | 26.49 ± 3.64 | |
July | CS | 19.93 ± 1.08 | 19.73 ± 1.11 | 20.14 ± 1.29 | 30.09 ± 1.47 | 43.08 ± 2.54 | 46.78 ± 1.18 |
CO | 22.62 ± 1.53 | 22.80 ± 1.48 | 21.33 ± 1.33 | 20.50 ± 0.81 | 24.24 ± 0.72 | 28.21 ± 1.07 | |
CWC | 21.27 ± 1.34 | 21.20 ± 1.18 | 20.32 ± 1.08 | 18.10 ± 0.11 | 20.30 ± 0.30 | 21.83 ± 2.37 | |
August | CS | 21.15 ± 1.20 | 21.10 ± 0.67 | 21.52 ± 1.30 | 26.02 ± 0.80 | 40.66 ± 5.78 | 40.52 ± 3.06 |
CO | 24.96 ± 2.00 | 22.03 ± 0.99 | 22.36 ± 1.55 | 19.47 ± 0.21 | 23.49 ± 0.22 | 26.39 ± 0.77 | |
CWC | 23.85 ± 1.52 | 21.80 ± 0.71 | 21.85 ± 1.10 | 18.05 ± 0.07 | 20.08 ± 0.19 | 19.83 ± 0.40 | |
September | CS | 17.95 ± 2.05 | 17.22 ± 1.74 | 17.58 ± 1.87 | 34.47 ± 2.50 | 34.07 ± 4.92 | 38.51 ± 5.29 |
CO | 19.38 ± 2.60 | 17.99 ± 2.11 | 18.18 ± 1.76 | 27.60 ± 2.41 | 23.74 ± 0.70 | 28.18 ± 0.69 | |
CWC | 18.94 ± 2.18 | 18.30 ± 1.86 | 18.01 ± 1.54 | 21.34 ± 2.59 | 19.29 ± 0.31 | 19.46 ± 0.29 | |
October | CS | 12.89 ± 0.99 | 12.80 ± 1.32 | 11.65 ± 2.02 | 29.61 ± 0.85 | 32.73 ± 3.15 | 42.33 ± 4.55 |
CO | 13.80 ± 1.15 | 13.22 ± 1.50 | 12.19 ± 2.05 | 22.95 ± 0.66 | 23.08 ± 0.22 | 29.23 ± 2.15 | |
CWC | 13.85 ± 1.13 | 13.55 ± 1.40 | 12.40 ± 1.96 | 17.79 ± 0.96 | 18.78 ± 0.05 | 26.25 ± 5.68 | |
November | CS | 8.64 ± 2.80 | 8.54 ± 1.12 | 7.22 ± 2.52 | 27.92 ± 0.23 | 38.92 ± 3.67 | 44.65 ± 1.60 |
CO | 9.09 ± 2.91 | 8.54 ± 1.26 | 7.94 ± 2.42 | 22.00 ± 0.28 | 23.82 ± 1.23 | 30.02 ± 0.79 | |
CWC | 9.29 ± 2.85 | 9.14 ± 1.08 | 8.15 ± 2.37 | 17.40 ± 0.05 | 20.30 ± 1.54 | 30.91 ± 0.72 | |
December | CS | 3.41 ± 0.77 | 3.71 ± 1.02 | 3.74 ± 1.02 | 31.18 ± 2.62 | 40.76 ± 1.34 | 44.60 ± 1.26 |
CO | 3.71 ± 0.82 | 3.49 ± 1.10 | 4.31 ± 0.88 | 22.88 ± 1.68 | 26.50 ± 1.94 | 29.52 ± 0.56 | |
CWC | 3.94 ± 0.75 | 4.38 ± 0.99 | 4.59 ± 0.82 | 18.74 ± 2.65 | 24.63 ± 2.60 | 30.87 ± 0.55 |
Variant | Average Value of the Observed Trait | |||||
---|---|---|---|---|---|---|
Soil Temperature (°C) | Soil Moisture Level (wt%) | |||||
2018 | 2019 | 2020 | 2018 | 2019 | 2020 | |
CS | 11.87 ± 7.16 a | 11.34 ± 7.00 a | 11.10 ± 6.82 a | 32.31 ± 3.53 b | 37.59 ± 3.47 b | 42.46 ± 2.76 b |
CO | 13.16 ± 8.34 a | 12.26 ± 7.91 a | 11.93 ± 7.14 a | 24.33 ± 3.85 a | 25.45 ± 2.68 a | 27.63 ± 2.02 a |
CWC | 12.67 ± 7.72 a | 12.15 ± 7.21 a | 11.81 ± 6.67 a | 21.98 ± 4.94 a | 23.14 ± 3.82 a | 25.49 ± 4.42 a |
Year | Variant | Average Value of the Observed Trait | |||||
---|---|---|---|---|---|---|---|
Bulk Density Red. (g·cm−1) | Total Porosity (%) | Instantaneous Content of | Max. Capillary Water Capacity (vol%) | Minimum Air Capacity (vol%) | |||
Water (vol%) | Air (vol%) | ||||||
2018 | CS | 1.39 ± 0.01 * | 47.25 ± 0.57 * | 19.72 ± 0.07 * | 27.53 ± 0.64 * | 33.45 ± 3.39 * | 13.80 ± 3.96 * |
CO | |||||||
CWC | |||||||
2019 | CS | 1.41 ± 0.02 a | 46.51 ± 0.80 a | 23.41 ± 1.61 a | 23.10 ± 0.81 a | 37.39 ± 1.36 a | 9.12 ± 2.16 a |
CO | 1.33 ± 0.02 b | 49.41 ± 0.70 b | 26.28 ± 1.39 b | 23.13 ± 0.69 b | 41.21 ± 4.01 b | 8.20 ± 3.31 b | |
CWC | 1.40 ± 0.03 a | 46.88 ± 1.14 a | 21.04 ± 5.33 a | 25.84 ± 4.19 a | 34.02 ± 5.19 a | 12.86 ± 4.05 a | |
2020 | CS | 1.42 ± 0.02 a | 45.98 ± 0.83 a | 26.42 ± 5.94 b | 19.56 ± 5.12 b | 23.90 ± 1.55 b | 22.09 ± 0.72 b |
CO | 1.38 ± 0.02 a | 47.46 ± 0.58 a | 21.43 ± 2.35 a | 26.03 ± 1.77 a | 36.97 ± 1.59 a | 10.49 ± 1.01 a | |
CWC | 1.39 ± 0.03 a | 47.03 ± 1.15 a | 19.11 ± 0.41 a | 27.92 ± 0.74 a | 37.61 ± 3.84 a | 9.41 ± 2.69 a |
Year | Variant | Average Value of the Observed Trait | ||||||
---|---|---|---|---|---|---|---|---|
Ntotal (%) | P (mg·kg−1) | K (mg·kg−1) | Mg (mg·kg−1) | Ca (mg·kg−1) | pHKCl (–) | Cox (%) | ||
2018 | CS | 0.21 ± 0.01 * | 45.33 ± 0.99 * | 471.67 ± 1.56 * | 459.61 ± 1.96 * | 4690.33 ± 0.96 * | 7.30 ± 0.01 * | 2.02 ± 0.01 * |
CO | ||||||||
CWC | ||||||||
2019 | CS | 0.17 ± 0.01 a | 48.03 ± 0.15 a | 475.81 ± 0.77 a | 454.79 ± 0.81 a | 4591.73 ± 2.11 a | 7.40 ± 0.03 a | 2.05 ± 0.02 a |
CO | 0.23 ± 0.01 b | 49.09 ± 0.18 b | 476.06 ± 0.06 a | 458.55 ± 0.79 a | 4738.55 ± 69.90 a | 7.37 ± 0.02 a | 2.05 ± 0.01 a | |
CWC | 0.20 ± 0.01 ab | 47.78 ± 0.26 a | 450.43 ± 7.33 b | 452.39 ± 1.64 a | 4592.68 ± 1.56 a | 7.40 ± 0.02 a | 2.02 ± 0.01 a | |
2020 | CS | 0.21 ± 0.02 a | 50.70 ± 2.04 a | 482.31 ± 0.92 a | 447.25 ± 2.99 a | 4499.32 ± 0.95 a | 7.40 ± 0.01 a | 2.06 ± 0.08 a |
CO | 0.23 ± 0.01 a | 50.75 ± 0.88 a | 484.45 ± 1.88 a | 452.30 ± 5.56 a | 4571.07 ± 39.53 a | 7.40 ± 0.02 a | 2.14 ± 0.06 a | |
CWC | 0.21 ± 0.01 a | 49.09 ± 2.88 a | 480.67 ± 2.40 a | 442.03 ± 2.96 a | 4444.74 ± 50.37 a | 7.40 ± 0.01 a | 2.05 ± 0.06 a |
Year | Variant | Average Value of the Observed Trait | ||||
---|---|---|---|---|---|---|
Grape Yield (t·ha−1) | Sugar Content (°NM) | All Titratable Acids (g·L−1) | pH (−) | YAN (mg·L−1) | ||
2018 | CS | 12.42 ± 0.09 c | 21.51 ± 0.01 a | 5.78 ± 0.04 b | 3.51 ± 0.00 b | 153.35 ± 0.05 b |
CO | 11.85 ± 0.06 b | 21.52 ± 0.00 a | 5.15 ± 0.03 a | 3.54 ± 0.00 c | 162.11 ± 0.06 c | |
CWC | 11.08 ± 0.10 a | 21.31 ± 0.00 b | 5.21 ± 0.02 a | 3.22 ± 0.01 a | 151.55 ± 0.05 a | |
2019 | CS | 13.22 ± 0.09 c | 24.42 ± 0.00 c | 5.39 ± 0.03 b | 3.47 ± 0.00 c | 152.63 ± 0.06 b |
CO | 12.19 ± 0.09 b | 24.51 ± 0.00 b | 5.09 ± 0.02 a | 3.33 ± 0.01 a | 161.31 ± 0.02 c | |
CWC | 11.07 ± 0.16 a | 22.83 ± 0.01 a | 5.16 ± 0.03 a | 3.36 ± 0.00 b | 151.26 ± 0.04 a | |
2020 | CS | 10.93 ± 0.04 a | 20.72 ± 0.02 c | 6.67 ± 0.03 b | 3.37 ± 0.01 a | 341.71 ± 0.04 b |
CO | 10.72 ± 0.09 a | 20.24 ± 0.01 b | 6.79 ± 0.02 c | 3.36 ± 0.01 a | 352.64 ± 0.09 c | |
CWC | 10.13 ± 0.11 b | 20.10 ± 0.00 a | 5.78 ± 0.02 a | 3.28 ± 0.01 b | 323.94 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burg, P.; Čížková, A.; Mašán, V.; Sedlar, A.; Matwijczuk, A.; Souček, J. The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions. Agronomy 2022, 12, 1862. https://doi.org/10.3390/agronomy12081862
Burg P, Čížková A, Mašán V, Sedlar A, Matwijczuk A, Souček J. The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions. Agronomy. 2022; 12(8):1862. https://doi.org/10.3390/agronomy12081862
Chicago/Turabian StyleBurg, Patrik, Alice Čížková, Vladimír Mašán, Aleksandar Sedlar, Arkadiusz Matwijczuk, and Jiří Souček. 2022. "The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions" Agronomy 12, no. 8: 1862. https://doi.org/10.3390/agronomy12081862
APA StyleBurg, P., Čížková, A., Mašán, V., Sedlar, A., Matwijczuk, A., & Souček, J. (2022). The Effect of Mulch Materials on Selected Soil Properties, Yield and Grape Quality in Vineyards under Central European Conditions. Agronomy, 12(8), 1862. https://doi.org/10.3390/agronomy12081862