Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Samples and Sample Preparation
2.2. Chemicals and Reagents
2.3. Carotenoid Analysis
2.4. NIRS Analysis
2.5. NIRS Equations
2.6. Partial Least Square Models Using WinISI III Software
2.7. Bayesian NIR Linear Regression Model
3. Results
3.1. Carotenoid Concentration in Maize Kernels
3.2. Partial Least Squares PVA NIRS Models Using WinISI III Software
3.3. NIRS Using Statistical Bayesian Linear Regression Model with R
3.4. Comparison of Bayesian and Least Squares Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- R code for the Bayesian NIR linear regression using BGGE library.
- ###Clear work space
- rm(list=ls())
- ### Install BGGE and prospectr packages for only one time
- install.packages(“BGGE”)
- install.packages(“prospectr”)
- ### load BGGE and prospectr packages
- library(BGGE)
- library(prospectr)
- ############################# Fitted Dataset 1 #############
- ##########Load data Data_set_1
- setwd(“~/Directory”)
- Datos1<-read.csv(file=“Data_set_1.csv”,header=T)
- Y1<-as.matrix(Datos1[,6:13]) #Traits
- Y<-Y1
- N1<-Datos1[,14:ncol(Datos1)] #NIRS
- ############### First derivative and NB
- NIR1<-savitzkyGolay(N1,m=1,p=2,w=11)
- X<-scale(NIR1)
- NB<-tcrossprod(X)/ncol(X)
- ### Fitted with BGGE
- Fitted<-matrix(0,nrow=1857,ncol=ncol(Y))
- COR<-numeric(ncol(Y))
- for(i in 1:ncol(Y)){
- y<-Y[,i]
- K0<-list(list(Kernel=NB,Type=“D”))
- fit<-BGGE(y=y,K=K0,ne=1,ite=30000,burn=5000,thin=2)
- Fitted[,i]<-fit$yHat
- COR[i]<-cor(fit$yHat,y,use=“pairwise.complete.obs”)
- }
- ## save in Rdata
- save(Fitted,COR,file=“Fitted_1857_NB.RData”)
- ############ Prediction traits Dataset 2 #####
- ##########Load data Dataset 3
- Datos3<-read.csv(file=“Data_set_3.csv”,header=T)
- Y3<-as.matrix(Datos3[,2:9]) #Traits
- N3<-Datos3[,10:ncol(Datos3)] #NIRS
- Y<-rbind(Y1,Y3)
- ############ First derivative
- NIR<-rbind(N1,N3)
- NIR1<-savitzkyGolay(NIR,m=1,p=1,w=11) #First derivative
- X<-scale(NIR1)
- NB<-tcrossprod(X)/ncol(X)
- Pred<-matrix(0,nrow=650,ncol=ncol(Y))
- for(i in 1:ncol(Y)){
- y<-Y[,i]
- yna<-y
- test<-1858:nrow(Y)
- yna[test]<-NA
- K0<-list(list(Kernel=NB,Type=“D”))
- fit<-BGGE(y=yna,K=K0,ne=1,ite=30000,burn=5000,thin=2)
- Pred[,i]<-fit$yHat[test]
- COR[i]<- COR[i]<-cor(fit$yHat[test],y[test],use=“pairwise.complete.obs”)
- }
- save(COR,Pred,file=“Pred_650.RData”)
References
- UNICEF. Estimates of Vitamin A Supplementation Coverage in Preschool-Age Children: Methods and Processes for the UNICEF Global Database; United Nations Children’s Fund: New York, NY, USA, 2020. [Google Scholar]
- Williams, A.M.; Tanumihardjo, S.A.; Rhodes, E.C.; Mapango, C.; Kazembe, B.; Phiri, F.; Kang’ombe, D.D.; Sheftel, J.; Orchardson, V.; Tripp, K.; et al. Vitamin A Deficiency Has Declined in Malawi, but with Evidence of Elevated Vitamin A in Children. Am. J. Clin. Nutr. 2021, 113, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Monasterio, J.I.; Palacios-Rojas, N.; Meng, E.; Pixley, K.; Trethowan, R.; Peña, R.J. Enhancing the Mineral and Vitamin Content of Wheat and Maize through Plant Breeding. J. Cereal Sci. 2007, 46, 293–307. [Google Scholar] [CrossRef]
- Pixley, K.; Palacios-Rojas, N.; Babu, R.; Mutale, R.; Surles, R.; Simpungwe, E. Biofortification of Maize with Provitamin A Carotenoids. In Carotenoids and Human Health; Tanumihardjo, S.A., Ed.; Humana Press: New York, NY, USA, 2013; pp. 271–292. [Google Scholar]
- Rodríguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; HarvestPlus Technical Monograph 2; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2004. [Google Scholar]
- Guild, G.E.; Parkes, E.; Nutti, M.; Palacios-Rojas, N.; Stangoulis, J. High-Throughput Measurement Methodologies for Developing Nutrient-Dense Crops. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11941–11954. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Palacios-Rojas, N.; Hossain, F.; Muthusamy, V.; Menkir, A.; Dhliwayo, T.; Ndhlela, T.; San Vicente, F.; Nair, S.K.; Vivek, B.S. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front. Genet. 2020, 10, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babu, R.; Palacios-Rojas, N.; Gao, S.; Yan, J.; Pixley, K. Validation of the Effects of Molecular Marker Polymorphisms in LcyE and CrtRB1 on Provitamin A Concentrations for 26 Tropical Maize Populations. Theor. Appl. Genet. 2013, 126, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, G.L. Comparison and Application of Non-Destructive NIR Evaluations of Seed Protein and Oil Content in Soybean Breeding. Agronomy 2020, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Chandler, K.; Lipka, A.E.; Owens, B.F.; Li, H.; Buckler, E.S.; Rocheford, T.; Gore, M.A. Genetic Analysis of Visually Scored Orange Kernel Color in Maize. Crop Sci. 2013, 53, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B.J.; Panozzo, J.; Walker, C.K.; Choy, A.L.; Kant, S.; Wong, D.; Tibbits, J.; Daetwyler, H.D.; Rochfort, S.; Hayden, M.J.; et al. Accelerating Wheat Breeding for End-Use Quality with Multi-Trait Genomic Predictions Incorporating near Infrared and Nuclear Magnetic Resonance-Derived Phenotypes. Theor. Appl. Genet. 2017, 130, 2505–2519. [Google Scholar] [CrossRef] [PubMed]
- Rincent, R.; Charpentier, J.P.; Faivre-Rampant, P.; Paux, E.; Le Gouis, J.; Bastien, C.; Segura, V. Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar. G3 Genes Genomes Genet. 2018, 8, 3961–3972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamu, E.O.; Nuwamanya, E.; Cornet, D.; Meghar, K.; Adesokan, M.; Tran, T.; Belalcazar, J.; Desfontaines, L.; Davrieux, F. Near-Infrared Spectroscopy Applications for High-Throughput Phenotyping for Cassava and Yam: A Review. Int. J. Food Sci. Technol. 2021, 56, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Oliveira, G.H.; Murray, S.C.; Cunha Júnior, L.C.; Gomes de Lima, K.M.; de Lelis Medeiros de Morais, C.; Henrique de Almeida Teixeira, G.; Môro, G.V. Estimation and Classification of Popping Expansion Capacity in Popcorn Breeding Programs Using NIR Spectroscopy. J. Cereal Sci. 2020, 91, 102861. [Google Scholar] [CrossRef]
- Tallada, J.G.; Palacios-Rojas, N.; Armstrong, P.R. Prediction of Maize Seed Attributes Using a Rapid Single Kernel near Infrared Instrument. J. Cereal Sci. 2009, 50, 381–387. [Google Scholar] [CrossRef]
- Armstrong, P.R.; Tallada, J.G. Prediction of Kernel Density of Corn Using Single-Kernel near Infrared Spectroscopy. Appl. Eng. Agric. 2012, 28, 569–574. [Google Scholar] [CrossRef]
- Hernández-Quintero, J.D.; Rosales-Nolasco, A.; Molina-Macedo, A.; Miranda-Piliado, A.; Willcox, M.; Hernández-Casillas, J.M.; Palacios-Rojas, N. Quantification of Anthocyanins through near Infrared Spectroscopy and Liquid Chromatography in Pigmented Maize. Rev. Fitotec. Mex. 2017, 40, 219–226. [Google Scholar]
- Jiang, H.Y.; Zhu, Y.J.; Wei, L.M.; Dai, J.R.; Song, T.M.; Yan, Y.L.; Chen, S.J. Analysis of Protein, Starch and Oil Content of Single Intact Kernels by near Infrared Reflectance Spectroscopy (NIRS) in Maize (Zea mays L.). Plant Breed. 2007, 126, 492–497. [Google Scholar] [CrossRef]
- Rosales, A.; Galicia-Flores, L.A.; Oviedo, E.; Islas-Caballero, C.; Palacios-Rojas, N. Near-Infrared Reflectance Spectroscopy (NIRS) for Protein, Tryptophan, and Lysine Evaluation in Quality Protein Maize (QPM) Breeding Programs. J. Agric. Food Chem. 2011, 59, 10781–10786. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wold, H.O.A. Nonlinear Estimation by Iterative Least Squares Procedures. In Research Papers in Statistics, Festschrift for J. Neyman; David, F.N., Ed.; Wiley: New York, NY, USA, 1966; pp. 411–444. [Google Scholar]
- Wold, H.O.A. Path Models with Latent Variables: The NIPALS Approach; Academic Press, Inc.: Cambridge, MA, USA, 1975. [Google Scholar]
- Aastveit, A.H.; Martens, H. ANOVA Interactions Interpreted by Partial Least Squares Regression. Biometrics 1986, 42, 829. [Google Scholar] [CrossRef]
- Cuevas, J.; Montesinos-López, O.; Juliana, P.; Guzmán, C.; Pérez-Rodríguez, P.; González-Bucio, J.; Burgueño, J.; Montesinos-López, A.; Crossa, J. Deep Kernel for Genomic and near Infrared Predictions in Multi-Environment Breeding Trials. G3 Genes Genomes Genet. 2019, 9, 2913–2924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, I.; Cuevas, J.; Luna-Vázquez, F.; Crossa, J.; Montesinos-López, O.; Burgueño, J.; Fritsche-Neto, R. BGGE: A New Package for Genomic-Enabled Prediction Incorporating Genotype × Environment Interaction Models. G3 Genes Genomes Genet. 2018, 8, 3039–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Rojas, N. Calidad Nutricional e Industrial de Maíz. Protocolos; CIMMYT: El Batan, Mexico, 2018; ISBN 9786078263783. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 29 March 2022).
- Martínez-Valdivieso, D.; Font, R.; Blanco-Díaz, M.T.; Moreno-Rojas, J.M.; Gómez, P.; Alonso-Moraga, Á.; Del Río-Celestino, M. Application of Near-Infrared Reflectance Spectroscopy for Predicting Carotenoid Content in Summer Squash Fruit. Comput. Electron. Agric. 2014, 108, 71–79. [Google Scholar] [CrossRef]
- Montes, J.M.; Utz, H.F.; Schipprack, W.; Kusterer, B.; Muminovic, J.; Paul, C.; Melchinger, A.E. Near-Infrared Spectroscopy on Combine Harvesters to Measure Maize Grain Dry Matter Content and Quality Parameters. Plant Breed. 2006, 125, 591–595. [Google Scholar] [CrossRef]
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package. R Package Version 0.2.0. R Packag. Vignette 2013, 1, 1–22. [Google Scholar]
- Suwarno, W.B.; Pixley, K.V.; Palacios-Rojas, N.; Kaeppler, S.M.; Babu, R. Genome-Wide Association Analysis Reveals New Targets for Carotenoid Biofortification in Maize. Theor. Appl. Genet. 2015, 128, 851–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleon, V.; Mugode, L.; Cabrera-Soto, L.; Palacios-Rojas, N. Carotenoid Retention in Biofortified Maize Using Different Post-Harvest Storage and Packaging Methods. Food Chem. 2017, 232, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Q.; Davis, C.R.; Schmaelzle, S.T.; Rocheford, T.R.; Cook, M.E.; Tanumihardjo, S.A. β-Cryptoxanthin Biofortified Maize (Zea mays) Increases β-Cryptoxanthin Concentration and Enhances the Color of Chicken Egg Yolk. Poult. Sci. 2011, 15, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.R.; Jing, H.; Howe, J.A.; Rocheford, T.R.; Tanumihardjo, S.A. β-Cryptoxanthin from Supplements or Carotenoid enhanced Maize Maintains Liver Vitamin A in Mongolian Gerbils (Meriones unguiculatus) Better than or Equal to β-Carotene Supplements. Br. J. Nutr. 2008, 100, 786–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Covarrubias, Y.; Dhliwayo, T.; Palacios-Rojas, N.; Ndhlela, T.; Magorokosho, C.; Aguilar-Rincón, V.H.; Cruz-Morales, A.S.; Trachsel, S. Effects of Drought and Low Nitrogen Stress on Provitamin a Carotenoid Content of Biofortified Maize Hybrids. Crop Sci. 2019, 59, 2521–2532. [Google Scholar] [CrossRef] [Green Version]
- Saenz, E.; Borrás, L.; Gerde, J.A. Carotenoid Profiles in Maize Genotypes with Contrasting Kernel Hardness. J. Cereal Sci. 2021, 99, 103206. [Google Scholar] [CrossRef]
- Sukto, S.; Lomthaisong, K.; Sanitchon, J.; Chankaew, S.; Scott, M.P.; Lübberstedt, T.; Lertrat, K.; Suriharn, B. Zeaxanthin of Yellow Small-Ear Waxy Corn Germplasm. Int. J. Agron. 2020, 2020, 8818768. [Google Scholar] [CrossRef]
- Vallabhaneni, R.; Gallagher, C.E.; Licciardello, N.; Cuttriss, A.J.; Quinlan, R.F.; Wurtzel, E.T. Metabolite Sorting of a Germplasm Collection Reveals the Hydroxylase3 Locus as a New Target for Maize Provitamin A Biofortification. Plant Physiol. 2009, 151, 1635–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenna, O.V.; Berardo, N. Application of Near-Infrared Reflectance Spectroscopy (NIRS) to the Evaluation of Carotenoids Content in Maize. J. Agric. Food Chem. 2004, 52, 5577–5582. [Google Scholar] [CrossRef] [PubMed]
- Kahrıman, F.; Onaç, İ.; Mert Türk, F.; Öner, F.; Egesel, C.Ö. Determination of Carotenoid and Tocopherol Content in Maize Flour and Oil Samples Using Near-Infrared Spectroscopy. Spectrosc. Lett. 2019, 52, 473–481. [Google Scholar] [CrossRef]
- Davey, M.W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.L.; Keulemans, J. Application of Visible and Near-Infrared Reflectance Spectroscopy (Vis/NIRS) to Determine Carotenoid Contents in Banana (Musa spp.) Fruit Pulp. J. Agric. Food Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef]
- Bonierbale, M.; Grüneberg, W.; Amoros, W.; Burgos, G.; Salas, E.; Porras, E.; Felde, T. Zum Total and Individual Carotenoid Profiles in Solanum Phureja Cultivated Potatoes: II. Development and Application of near-Infrared Reflectance Spectroscopy (NIRS) Calibrations for Germplasm Characterization. J. Food Compos. Anal. 2009, 22, 509–516. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef]
NB Dataset 1 Model Fitting | NB Dataset 1 50 Random Samples 70–30% (TRN-TST) | NB Dataset 1 50 Random Samples 60–40% (TRN-TST) | NB Dataset 1 and 2 50 Random Samples Group 1 Data + 2% Group 2 Data (TRN) | |
---|---|---|---|---|
PVA_NIR1 (first derivative) | 0.905 | 0.882 (0.009) | 0.878 (0.008) | 0.381 (0.016) |
PVA_NIR2 (second derivative) | 0.903 | 0.867 (0.01) | 0.865 (0.009) | 0.317 (0.029) |
BCX_NIR1 (first derivative) | 0.865 | 0.834 (0.012) | 0.829 (0.009) | 0.753 0.008 |
BCX_NIR2 (second derivative) | 0.867 | 0.825 (0.011) | 0.821 (0.009) | 0.754 (0.006) |
BC_NIR1 (first derivative) | 0.865 | 0.864 (0.011) | 0.861 (0.009) | 0.395 0.022 |
BC_NIR2 (second derivative) | 0.891 | 0.851 (0.012) | 0.847 (0.010) | 0.326 (0.031) |
Trait | N a | Range | Mean b | SD c | SEP d | SD/SEP | MPLS with WinISI | Bayesian NIR Linear Regression with BGGE | ||
---|---|---|---|---|---|---|---|---|---|---|
R2v e | Pearson f | R2v e | Pearson f | |||||||
LUT | 650 | 0.05–8.83 | 2.24 | 1.43 | 0.25 | 5.64 | 0.55 | 0.74 | 0.55 | 0.74 |
ZEA | 650 | 0.17–27.97 | 5.64 | 3.98 | 0.68 | 5.88 | 0.61 | 0.78 | 0.59 | 0.77 |
BCX | 650 | 0.10–9.64 | 3.19 | 1.80 | 0.36 | 5.02 | 0.57 | 0.76 | 0.54 | 0.74 |
13-cis-BC | 650 | 0.18–2.13 | 0.87 | 0.34 | 0.13 | 2.69 | 0.13 | 0.36 | 0.09 | 0.31 |
BC | 650 | 0.20–10.46 | 2.76 | 1.39 | 0.55 | 2.52 | 0.22 | 0.47 | 0.15 | 0.38 |
9-cis-BC | 650 | 0.19–2.37 | 1.05 | 0.38 | 0.10 | 3.64 | 0.12 | 0.35 | 0.09 | 0.3 |
PVA | 650 | 0.62–15.71 | 6.29 | 2.22 | 0.81 | 2.76 | 0.16 | 0.39 | 0.13 | 0.36 |
TC | 650 | 0.89–43.49 | 15.75 | 6.27 | 1.49 | 4.21 | 0.75 | 0.87 | 0.71 | 0.84 |
Trait | N a | Range (µg g−1 DW) | Mean b | SD c | R2C d | SEC e | R2cv f | SECV g | % Outliers | RPD h |
---|---|---|---|---|---|---|---|---|---|---|
LUT | 1778 | 0.10–10.88 | 2.22 | 1.60 | 0.81 | 0.69 | 0.79 | 0.73 | 4.25 | 2.20 |
ZEA | 1779 | 0.15–29.06 | 5.25 | 4.44 | 0.81 | 1.92 | 0.80 | 1.96 | 4.20 | 2.26 |
BCX | 1779 | 0.04–19.16 | 3.20 | 2.77 | 0.72 | 1.46 | 0.70 | 1.51 | 4.20 | 1.84 |
13-cis-BC | 1790 | 0–4.47 | 1.24 | 0.73 | 0.77 | 0.35 | 0.75 | 0.36 | 3.61 | 2.02 |
BC | 1787 | 0.09–20.93 | 4.52 | 3.48 | 0.79 | 1.61 | 0.77 | 1.68 | 3.77 | 2.07 |
9-cis-BC | 1781 | 0–4.55 | 1.15 | 0.50 | 0.70 | 0.27 | 0.65 | 0.29 | 4.09 | 1.69 |
PVA | 1768 | 0.11–27.31 | 8.61 | 4.92 | 0.81 | 2.12 | 0.80 | 2.19 | 3.72 | 2.24 |
TC | 1788 | 1.77–57.95 | 17.73 | 9.33 | 0.93 | 2.43 | 0.93 | 2.53 | 4.79 | 3.69 |
LUT | ZEA | BCX | 13-cis-BC | BC | 9-cis-BC | TC | PVA | |
---|---|---|---|---|---|---|---|---|
LUT | 1 | 0.890 | 0.394 | 0.008 | 0.012 | 0.000 | 0.614 | 0.010 |
ZEA | 1 | 0.452 | 0.001 | 0.002 | 0.003 | 0.719 | 0.031 | |
BCX | 1 | 0.000 | 0.001 | 0.007 | 0.550 | 0.085 | ||
13-cis-BC | 1 | 0.968 | 0.723 | 0.205 | 0.900 | |||
BC | 1 | 0.622 | 0.189 | 0.890 | ||||
9-cis-BC | 1 | 0.213 | 0.686 | |||||
TC | 1 | 0.431 | ||||||
PVA | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales, A.; Crossa, J.; Cuevas, J.; Cabrera-Soto, L.; Dhliwayo, T.; Ndhlela, T.; Palacios-Rojas, N. Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize. Agronomy 2022, 12, 1027. https://doi.org/10.3390/agronomy12051027
Rosales A, Crossa J, Cuevas J, Cabrera-Soto L, Dhliwayo T, Ndhlela T, Palacios-Rojas N. Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize. Agronomy. 2022; 12(5):1027. https://doi.org/10.3390/agronomy12051027
Chicago/Turabian StyleRosales, Aldo, José Crossa, Jaime Cuevas, Luisa Cabrera-Soto, Thanda Dhliwayo, Thokozile Ndhlela, and Natalia Palacios-Rojas. 2022. "Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize" Agronomy 12, no. 5: 1027. https://doi.org/10.3390/agronomy12051027
APA StyleRosales, A., Crossa, J., Cuevas, J., Cabrera-Soto, L., Dhliwayo, T., Ndhlela, T., & Palacios-Rojas, N. (2022). Near-Infrared Spectroscopy to Predict Provitamin A Carotenoids Content in Maize. Agronomy, 12(5), 1027. https://doi.org/10.3390/agronomy12051027