Insecticidal Effect of Pistacia lentiscus (Anacardiaceae) Metabolites against Lobesia botrana (Lepidoptera: Tortricidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Fractionation
2.3. Triglyceride Identification
2.4. Insects
2.5. Petri Dish Residual Exposure Bioassay
2.6. Topical Application Bioassay
2.7. Statistical Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranca, A.; Petrescu, A.; Artem, V.; Boloș, P.; Cîlț, M.; Ene, A.S. Controlling the pests with the help of plants in organic vineyards. Agricultura 2019, 109, 81–87. [Google Scholar]
- Ioriatti, C.; Lucchi, A.; Varela, L.G. Grape berry moths in western European vineyards and their recent movement into the new world. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 339–359. [Google Scholar]
- Ioriatti, C.; Anfora, G.; Tasin, M.; De Cristofaro, A.; Witzgall, P.; Lucchi, A. Chemical Ecology and Management of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2011, 104, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondy, N.; Caissa, C.; Pitoizet, N.; Delbecque, J.P.; Corio-Costet, M.F. Effects of the ingestion of Serratula tinctoria extracts, a plant containing phytoecdysteroids, on the development of the vineyard pest Lobesia botrana (Lepidoptera: Tortricidae). Arch. Insect Biochem. Physiol. 1997, 35, 227–235. [Google Scholar] [CrossRef]
- Gabel, B.; Thiéry, D. Non-host plant odor (Tanacetum vulgare; Asteraceae) affects the reproductive behavior of Lobesia botrana Den. et Schiff (Lepidoptera: Tortricidae). J. Insect Behav. 1994, 7, 149–157. [Google Scholar] [CrossRef]
- Ranca, A.; Artem, V.; Petrescu, A.; Fragnier, A.L.; Kehril, P. Viticulture and Enology. In Proceedings of the 55th Croatian & 15th International Symposium on Agriculture, Vodice, Croatia, 16–21 February 2020. [Google Scholar]
- Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A.; Mitakou, S.; Halabalaki, M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020, 254, 112485. [Google Scholar] [CrossRef]
- Rauf, A.; Patel, S.; Uddin, G.; Siddiqui, B.; Ahmad, B.; Muhammad, N.; Mabkhot, N.; Hadda, T.B. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed. Pharmacother. 2017, 86, 393–404. [Google Scholar] [CrossRef]
- Dimas, K.S.; Pantazis, P.; Ramanujam, R. Review: Chios mastic gum: A plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. Vivo 2012, 26, 777–785. [Google Scholar]
- Paraschos, S.; Mitakou, S.; Skaltsounis, A.L. Chios gum mastic: A review of its biological activities. Curr. Med. Chem. 2012, 19, 2292–2302. [Google Scholar] [CrossRef]
- Ljubuncic, P.; Song, H.; Cogan, U.; Azaizeh, H.; Bomzon, A. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease. J. Ethnopharmacol. 2005, 100, 198–204. [Google Scholar] [CrossRef]
- Remila, S.; Atmani-Kilani, D.; Delemasure, S.; Connat, J.; Azib, L.; Richard, T.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. Med. 2015, 7, 274–286. [Google Scholar] [CrossRef]
- Piccolella, S.; Nocera, P.; Carillo, P.; Woodrow, P.; Greco, V.; Manti, L.; Fiorentino, A.; Pacifico, S. An apolar Pistacia lentiscus L. leaf extract: GC-MS metabolic profiling and evaluation of cytotoxicity and apoptosis inducing effects on SH-SY5Y and SK-N-BE(2)C cell lines. Food Chem. Toxicol. 2016, 95, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Catalani, S.; Palma, F.; Battistelli, S.; Benedetti, S. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PLoS ONE 2017, 12, e0220830. [Google Scholar] [CrossRef]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci. Rep. 2017, 7, 3782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelgaleil, S.; Mohamed, M.; Badawy, M.; El-arami, S. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their Inhibitory Effects on Acetylcholinesterase Activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Pourya, M.; Smagghe, G. Insecticidal activity and composition of essential oils from Pistacia atlantica subsp. kurdica against the model and stored product pest beetle Tribolium castaneum. Phytoparasitica 2016, 44, 601–607. [Google Scholar] [CrossRef]
- Tabti, L.; El Amine Dib, M.; Tabti, B.; Costa, J.; Muselli, A. Insecticidal activity of essential oils of Pistacia atlantica Desf. and Pistacia lentiscus L. against Tribolium confusum Dul. Appl. Biotechnol. Rep. 2020, 7, 111–115. [Google Scholar]
- Bachrouch, O.; Mediouni-Ben Jemâa, J.; Chaieb, I.; Talou, T.; Marzouk, B.; Abderraba, M. Insecticidal activity of Pistacia lentiscus essential oil on Tribolium castaneum as alternative to chemical control in storage. Tunis. J. Plant Prot. 2010, 5, 63–70. [Google Scholar]
- Bachrouch, O.; Jemâa, J.B.; Talou, T.; Marzouk, B.; Abderraba, M. Fumigant toxicity of Pistacia lentiscus essential oil against Tribolium castaneum and Lasioderma serricorne. Bull. Insectol. 2010, 63, 129–135. [Google Scholar]
- Bachrouch, O.; Mediouni-Ben Jemâa, J.; Wissem, A.; Talou, T.; Marzouk, B.; Abderraba, M. Composition and insecticidal activity of essential oil from Pistacia lentiscus L. against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2010, 46, 242–247. [Google Scholar] [CrossRef]
- Lamiri, A.; Lhaloui, S.; Benjilali, B.; Berrada, M. Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res. 2001, 71, 9–15. [Google Scholar] [CrossRef]
- Pascual-Villalobos, M.; Robledo, A. Screening for anti-insect activity in Mediterranean plants. Ind. Crops Prod. 1998, 8, 183–194. [Google Scholar] [CrossRef]
- Lazarou, K. Study on the Stability of an Extra Virgin Olive Oil under Different Storage Conditions. Master’s Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2019. [Google Scholar]
- Konstantopoulou, M.; Milonas, P.; Mazomenos, B.E. Partial Purification and Insecticidal Activity of Toxic Metabolites Secreted by a Mucor hiemalis Strain (SMU-21) against Adults of Bactrocera oleae and Ceratitis capitata (Diptera: Tephritidae). J. Econ. Entomol. 2006, 99, 1657–1664. [Google Scholar] [CrossRef]
- Siskos, E.P.; Konstantopoulou, M.A.; Mazomenos, B.E.; Jervis, M. Insecticidal activity of Citrus aurantium fruit, leaf and shoot extracts against adult olive fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 2007, 100, 1215–1220. [Google Scholar] [CrossRef]
- Willer, H.; Lernoud, J. The World of Organic Agriculture. Statistics and Emerging Trends 2014; FiBL-IFOAM Report; Research Institute of Organic Agriculture (FiBL): Frick, Germany; IFOAM-Organics International: Bonn, Germany, 2014; p. 308. [Google Scholar]
- Isman, M. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrysargyris, A.; Xylia, P.; Koutsoumpeli, E.; Fytrou, A.; Konstantopoulou, M.; Tzortzakis, N. Organic Cultivation and Deficit Irrigation Practices to Improve Chemical and Biological Activity of Mentha spicata Plants. Agronomy 2021, 11, 599. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Faraga, M.; Mohamed, H.M.; Ahmedb, H.Y.; Abdel-Rahmanc, A. Repellent and Insecticidal Activities of Melia azedarach L. against Cotton Leafworm, Spodoptera littoralis (Boisd.). Z. Naturforsch. 2011, 66, 129–135. [Google Scholar] [CrossRef]
- Zavala-Sánchez, M.A.; Pérez, G.S. Activity of the main fatty acid components of the hexane leaf extract of Ricinus communis against Spodoptera frugiperda. Afr. J. Biotechnol. 2012, 11, 4274–4278. [Google Scholar]
- Brahmi, F.; Haddad, S.; Bouamara, K.; Yalaoui-Guellal, D.; Prost-Camus, E.; Pais de Barros, J.P.; Prost, M.; Atanasov, A.; Madania, K.; Boulekbache-Makhlouf, L.; et al. Comparison of chemical composition and biological activities of Algerian seed oils of Pistacia lentiscus L., Opuntia ficus indica (L.) mill. and Argania spinosa L. Skeels. Ind. Crops Prod. 2020, 151, 112456. [Google Scholar] [CrossRef]
- Dhifi, D.; Jelali, N.; Chaabani, E.; Beji, M.; Fatnassi, S.; Omri, S.; Mnif, W. Chemical composition of Lentisk (Pistacia lentiscus L.) seed oil. Afr. J. Agric. Res. 2013, 8, 1395–1400. [Google Scholar]
- Belyagoubi-Benhammou, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Zitouni, A.; Ghembaza, N.; Benhassaini, H.; Atik-Bekkara, F.; Piras, A.; Falconieri, D.; Rosa, A. Fatty acid composition and antioxidant activity of Pistacia lentiscus L. fruit fatty oil from Algeria. J. Food Meas. Charac. 2018, 12, 1408–1412. [Google Scholar] [CrossRef]
- Ramsewak, R.S.; Nair, M.G.; Murugesan, S.; Mattson, W.J.; Zasada, J. Insecticidal fatty acids and triglycerides from Dirca palustris. J. Agric. Food Chem. 2001, 49, 5852–5856. [Google Scholar] [CrossRef] [PubMed]
- Rahuman, A.A.; Venkatesan, P.; Gopalakrishnan, G. Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.). Schrad. Parasitol. Res. 2008, 103, 1383–1390. [Google Scholar] [CrossRef]
- Perumalsamy, H.; Jin Jang, M.; Kim, J.R.; Kadarkarai, M.; Ahn, Y.J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit. Vectors 2015, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Acheuk, F.; Basiouni, S.; Shehata, A.A.; Dick, K.; Hajri, H.; Lasram, S.; Yilmaz, M.; Emekci, M.; Tsiamis, G.; Spona-Friedl, M.; et al. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022, 12, 311. [Google Scholar] [CrossRef]
- Clements, J.; Groves, R.L.; Cava, J.; Barry, C.C.; Chapman, S.; Olson, J.M. Conjugated linoleic acid as a novel insecticide targeting the agricultural pest Leptinotarsa decemlineata. PLoS ONE 2019, 4, e0220830. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Shi, J.; Mu, Y.; Tao, K.; Jin, H.; Hou, T. AW1 Neuronal Cell Cytotoxicity: The Mode of Action of Insecticidal Fatty Acids. J. Agric. Food Chem. 2019, 67, 12129–12136. [Google Scholar] [CrossRef]
- de Melo, A.R.; Garcia, I.J.P.; Serrao, J.E.; Santos, H.L.; Lima, L.A.R.D.; Alves, S.N. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotox. Environ. Saf. 2018, 154, 1–5. [Google Scholar] [CrossRef]
- Démares, F.; Coquerel, Q.; Richoux, G.; Linthicum, K.; Bloomquist, J. Fatty acid and related potassium Kv2 channel blockers: Toxicity and physiological actions on mosquitoes. Insects 2018, 9, 155. [Google Scholar] [CrossRef] [Green Version]
Concentration (μg/cm3) | Time (h) | |
---|---|---|
3 | 24 | |
76 | 0 ± 0 a | 4 ± 1.5 a |
115 | 1.5 ± 0.8 a | 15.5 ± 3.3 b |
153 | 1 ± 0.8 a | 25 ± 3.2 b |
229 | 12 ± 3.5 b | 48.5 ± 4.2 c |
305 | 25 ± 3.5 c | 55.5 ± 4.1 d |
382 | 28.5 ± 2.9 c | 63 ± 4 d |
Time (h) | LC50 (μg/cm3) | CL 95% | Slope ± SE | Intercept ± SE | x2 | p |
---|---|---|---|---|---|---|
3 | 441.2 | 410.7–484.2 | 0.007 ± 0.001 | −2.87 ± 0.05 | 1448.07 | 0.000 |
24 | 287.85 | 269.9–308.9 | 0.006 ± 0.003 | −1.66 ± 0.03 | 1745.48 | 0.000 |
Dose (μg/Insect) | Time (h) | |||
---|---|---|---|---|
3 | 24 | 48 | 72 | |
20 | 1.7 ± 1.7 a | 6.7 ± 3.8 a | 16.7 ± 4.8 a | 22.7 ± 5.4 a |
40 | 12 ± 4.9 b | 20 ± 6.3 b | 22 ± 4.7 a | 22.6 ± 5.2 a |
80 | 32 ± 5.8 c | 40 ± 4.57 c | 44 ± 5.1 b | 44 ± 5.1 b |
160 | 28 ± 4 c | 30 ± 6.3 b | 52 ± 4.7 c | 58 ± 6.6 c |
200 | 40 ± 5.5 d | 48 ± 5.8 d | 50 ± 6.3 c | 54 ± 6 c |
Time (h) | LD50 (μg) | CL 95% | Slope ± SE | Intercept ± SE | x2 | p |
---|---|---|---|---|---|---|
3 | 239.9 | 189.8–372.8 | 0.005 ± 0.000 | −1.41 ± 0.06 | 258.76 | 0.000 |
24 | 217.6 | 167.7–364.0 | 0.005 ± 0.000 | −1.07 ± 0.05 | 258.96 | 0.000 |
48 | 168.6 | 135.2–232.8 | 0.005 ± 0.000 | −0.852 ± 0.048 | 188.934 | 0.000 |
72 | 148.9 | 118.1–200.8 | 0.005 ± 0.000 | −0.765 ± 0.47 | 192.07 | 0.000 |
Time (h) | ||||
---|---|---|---|---|
Concentration (μg/cm3) | 3 | 24 | 48 | 72 |
382 | 18.3 ± 5.3 a | 60.8 ± 5.9 b | 71.7 ± 5.7 c | 77.5 ± 5.86 c |
Dose (μg/Insect) | ||||
150 | 25 ± 3.4 a | 31.7 ± 4 ab | 38.3 ± 5.3 b | 50 ± 5.8 c |
Time (h) | ||||
---|---|---|---|---|
Oleic Acid | ||||
Concentration (μg/cm3) | 3 | 24 | 48 | 72 |
76 | 10.7 ± 3.1 a | 20 ± 5.5 a | 23.3 ± 5.9 a | 24.7 ± 5.7 a |
116 | 32.7 ± 7.3 b | 51.3 ± 6.2 b | 57.3 ± 6.5 b | 60.7 ± 6.2 b |
153 | 56 ± 5.9 c | 68 ± 5.2 c | 69.3 ± 4.9 c | 71.3 ± 4.6 b |
191 | 64.7 ± 6.1 c | 75.3 ± 5.1 c | 77.3 ± 4.7 c | 84 ± 4.2 c |
229 | 90.7 ± 2.8 d | 92.7 ± 2.8 c d | 93.3 ± 2.7 d | 98.7 ± 0.9 d |
Linoleic Acid | ||||
76 | 6 ± 2.9 a | 14.6 ± 3.9 a | 19.3 ± 3.8 a | 20.7 ± 4.1 a |
116 | 13.3 ± 3.2 b | 28 ± 2.9 b | 32 ± 3.2 b | 32.7 ± 3.4 b |
153 | 44 ± 4.4 c | 57.3 ± 3.6 c | 60.7 ± 3.1 c | 62 ± 3.1 c |
191 | 65.3 ± 7.0 d | 71.3 ± 5.7 d | 74.7 ± 5.0 d | 76.7 ± 4.6 d |
229 | 79.3 ± 5.0 d | 80.7 ± 4.7 d | 82 ± 4.3 d | 83.3 ± 3.9 d |
Time (h) | LD50 (μg/cm3) | CL 95% | Slope ± SE | Intercept ± SE | x2 | p |
---|---|---|---|---|---|---|
Oleic Acid | ||||||
3 | 172.33 | 152.74–191.05 | 0.010 ± 0.001 | −1.65 ± 0.04 | 2320.14 | 0.000 |
24 | 135.37 | 110.15–154.79 | 0.009 ± 0.001 | −1.11 ± 0.04 | 2056.20 | 0.000 |
48 | 123.48 | 93.41–144.86 | 0.008 ± 0.001 | −1.01 ± 0.04 | 2073.85 | 0.000 |
72 | 112.89 | 81.51–134.61 | 0.011 ± 0.001 | −1.00 ± 0.04 | 2238.15 | 0.000 |
Linoleic Acid | ||||||
3 | 201.42 | 184.75–220.40 | 0.010 ± 0.001 | −2.08 ± 0.05 | 2169.08 | 0.000 |
24 | 173.67 | 141.82–189.52 | 0.009 ± 0.001 | −1.54 ± 0.04 | 1480.62 | 0.000 |
48 | 161.81 | 145.05–177.17 | 0.006 ± 0.001 | −1.36 ± 0.04 | 1304.06 | 0.000 |
72 | 157.26 | 140.23–172.51 | 0.008 ± 0.001 | −1.34 ± 0.04 | 1302.64 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasenaki, I.; Betsi, P.-C.; Raptopoulos, D.; Konstantopoulou, M. Insecticidal Effect of Pistacia lentiscus (Anacardiaceae) Metabolites against Lobesia botrana (Lepidoptera: Tortricidae). Agronomy 2022, 12, 755. https://doi.org/10.3390/agronomy12040755
Dasenaki I, Betsi P-C, Raptopoulos D, Konstantopoulou M. Insecticidal Effect of Pistacia lentiscus (Anacardiaceae) Metabolites against Lobesia botrana (Lepidoptera: Tortricidae). Agronomy. 2022; 12(4):755. https://doi.org/10.3390/agronomy12040755
Chicago/Turabian StyleDasenaki, Ioanna, Petri-Christina Betsi, Dimitris Raptopoulos, and Maria Konstantopoulou. 2022. "Insecticidal Effect of Pistacia lentiscus (Anacardiaceae) Metabolites against Lobesia botrana (Lepidoptera: Tortricidae)" Agronomy 12, no. 4: 755. https://doi.org/10.3390/agronomy12040755
APA StyleDasenaki, I., Betsi, P.-C., Raptopoulos, D., & Konstantopoulou, M. (2022). Insecticidal Effect of Pistacia lentiscus (Anacardiaceae) Metabolites against Lobesia botrana (Lepidoptera: Tortricidae). Agronomy, 12(4), 755. https://doi.org/10.3390/agronomy12040755