Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Tea Leaf Materials
2.2. Soil Preparation and Analysis
2.3. Tea Leaf Sample Preparation and Analysis
2.3.1. Analysis of Elements in Tea Leaves
2.3.2. Analysis of Chemical Components in Tea Infusion
Determination of Total Polyphenols
Determination of Total Catechins
Determination of Total Flavones
Determination of Total Amino Acids
Determination of Caffeine
2.4. Statistical Analysis
3. Results
3.1. Soil Properties in Different Depths
3.2. The Concentration of Leaf Nutrient Elements
3.3. The Content of Extractable Chemical Compositions in Tea Leaves
3.4. Heat Map for the Relationship between Soil Properties and Leaf Elements
3.5. Heat Map for the Relationship between Leaf Elements and Chemical Compositions
3.6. PCA and PCA Correlation between Soil Properties and Tea Quality Compositions
4. Discussion
4.1. The Nutrient Element Uptake and Usability for Different Depths of Soil
4.2. Implication of Leaf Element Level for Tea Quality Chemical Compositions
4.3. From Soil Properties, Elements, to Tea Quality Compositions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | Nitrogen |
P | Phosphorus |
K | Potassium |
Ca | Calcium |
Mg | Magnesium |
Fe | Iron |
Mn | Manganese |
Cu | Copper |
Zn | Zinc |
Al | Aluminum |
EC | Electrical Conductivity (Wsoil/Vwater = 1/5) |
OM | Organic matter |
WAS | Wet aggregate stability |
GS | Glutamine synthetase |
GOGAT | Glutamate synthase |
TS | Theanine synthetase |
GTP | Glutamic-pyruvic transaminase |
GLD | Glutamate dehydrogenase |
PPO | Polyphenol oxidase |
PCA | Principal components analysis |
PP/AA ratio | Polyphenol/amino acid ratio |
EPA Taiwan | Environmental Protection Administration, Executive Yuan, Taiwan |
TRES Taiwan | Tea Research and Extension Station, Executive Yuan, Taiwan |
References
- Ahmed, S.; Unachukwu, U.; Stepp, J.R.; Peters, C.M.; Long, C.L.; Kennelly, E. Pu-erh tea tasting in Yunnan, China: Correlation of drinkers’ perceptions to phytochemistry. J. Ethnopharmacol. 2010, 132, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. 2020 Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 January 2022).
- Liang, Y.R.; Lu, J.L.; Zhang, L.Y.; Wu, S.; Wu, Y. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 2003, 80, 283–290. [Google Scholar] [CrossRef]
- Alasalvar, C.; Topal, B.; Serpen, A.; Bahar, B.; Pelvan, E.; Gokmen, V. Flavor Characteristics of Seven Grades of Black Tea Produced in Turkey. J. Agric. Food Chem. 2012, 60, 6323–6332. [Google Scholar] [CrossRef]
- Dai, W.D.; Qi, D.D.; Yang, T.; Lv, H.P.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.H.; Xie, D.C.; Tan, J.F.; et al. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Khokhar, S.; Magnusdottir, S.G.M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Gai, Z.S.; Wang, Y.; Jiang, J.T.; Xie, H.; Ding, Z.T.; Ding, S.B.; Wang, H. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolomics. HortScience 2019, 54, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Q.; Liu, P.P.; Shi, J.; Gao, Y.; Wang, Q.S.; Yin, J.F. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 2018, 249, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Kang, L.; Wang, C.Z.; Huang, P.J.; Huang, H.T.; Lin, S.Y.; Chou, S.H.; Lu, C.C.; Shen, P.C.; Lin, Y.S.; et al. (-)-Epigallocatechin-3-Gallate decreases osteoclastogenesis via modulation of rankl and osteoprotegrin. Molecules 2019, 24, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleverdon, R.; Elhalaby, Y.; McAlpine, M.D.; Gittings, W.; Ward, W.E. Total polyphenol content and antioxidant capacity of tea bags: Comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Yonekura, Y.; Terauchi, M.; Hirose, A.; Odai, T.; Kato, K.; Miyasaka, N. Daily coffee and green tea consumption is inversely associated with body mass index, body fat percentage, and cardio-ankle vascular index in middle-aged japanese women: A cross-sectional study. Nutrients 2020, 12, 1370. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Kim, H.W.; Lee, S.H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.W.; Jung, H.A.; Yoo, S.M.; Kim, J.B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, F.; Sahin Nadeem, H.; Akdogan, A.; Dincer, C.; Topuz, A. Effect of altitude, shooting period, and tea grade on the catechins, caffeine, theaflavin, and thearubigin of Turkish black tea. Turk. J. Agric. For. 2018, 42, 334–340. [Google Scholar] [CrossRef]
- Jayasekera, S.; Kaur, L.; Molan, A.L.; Garg, M.L.; Moughan, P.J. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem. 2014, 152, 546–551. [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.Y.; Stepp, J.R.; et al. Environmental factors variably impact tea secondary metabolites in the context of climate change. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef] [Green Version]
- Willson, K.C.; Clifford, M.N. Tea: Cultivation to Consumption; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Qiao, C.L.; Xu, B.; Han, Y.T.; Wang, J.; Wang, X.; Liu, L.L.; Liu, W.X.; Wan, S.Q.; Tan, H.; Liu, Y.Z.; et al. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.Y.; Wu, X.; Hardter, R. Effects of potassium and magnesium nutrition on the quality components of different types of tea. J. Sci. Food Agric. 1999, 79, 47–52. [Google Scholar] [CrossRef]
- Chen, P.A.; Lin, S.Y.; Liu, C.F.; Su, Y.S.; Cheng, H.Y.; Shiau, J.H.; Chen, I.Z. Correlation between nitrogen application to tea flushes and quality of green and black teas. Sci. Hortic. 2015, 181, 102–107. [Google Scholar] [CrossRef]
- Lin, Z.H.; Qi, Y.P.; Chen, R.B.; Zhang, F.Z.; Chen, L.S. Effects of phosphorus supply on the quality of green tea. Food Chem. 2012, 130, 908–914. [Google Scholar] [CrossRef]
- Steffens, J.C.; Harel, E.; Hunt, M.D. Polyphenol oxidase. In Genetic Engineering of Plant Secondary Metabolism; Ellis, B.E., Kuroki, G.W., Stafford, H.A., Eds.; Springer: Boston, MA, USA, 1994; pp. 275–312. [Google Scholar]
- Sun, L.; Zhang, M.; Liu, X.; Mao, Q.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- Tolra, R.; Martos, S.; Hajiboland, R.; Poschenrieder, C. Aluminium alters mineral composition and polyphenol metabolism in leaves of tea plants (Camellia sinensis). J. Inorg. Biochem. 2020, 204, 110956. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils, 3rd ed.; Pearson: New York, NY, USA, 2013. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Ed.; SSSA Book Series 5; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Ed.; SSSA Book Series 5; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Ed.; SSSA Book Series 5; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Kemper, W.; Rosenau, R. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1; SSSA Book Series 5; SSSA Inc.: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Mulvaney, R.L. Nitrogen—inorganic forms. In Methods of soil analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Ed.; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Kuo, S. Phosphorus. In Methods of soil analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Ed.; SSSA Book Series 5; SSSA Inc. and ASA Inc.: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- EPA, Taiwan. Method Code No: NIEA S6321.65B; Environmental Protection Adiministration of Taiwan ROC: Taipei, Taiwan, 2018.
- Jones, J.B., Jr.; Case, V.W. Sampling, handling, and analyzing plant tissue samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; SSSA Inc.: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Dai, J.R.; Lin, S.R.; Huang, Y.J.; Yang, M.J. Effects of extraction temperature and time on the contents of tea catechins and total polyphenols. Taiwan Tea Res. Bull. 2016, 32, 151–163. [Google Scholar]
- Ou, S.M.; Liu, S.L.; Tsai, Y.S.; Chen, K.R. Characteristics of Taiwan Tiehkuanyin tea identified by physicochemical and stepwise discriminant analyses. Taiwan Tea Res. Bull. 2004, 23, 133–144. [Google Scholar]
- Huang, C.C.; Ko, C.H. Impact of chemical composition of TTES No. 18 due to variations of processing treatments. Taiwan Tea Res. Bull. 2006, 25, 197–204. [Google Scholar]
- Wang, C.Y. Tea Crop Science: Tea Plant Cultivation and Garden Management; New Sharing Culture Enterprise Co., Ltd.: Taipei, Taiwan, 2018; p. 202. [Google Scholar]
- Tao, C.J.; Song, Y.X.; Chen, Z.; Zhao, W.F.; Ji, J.F.; Shen, N.P.; Ayoko, G.A.; Frost, R.L. Geological load and health risk of heavy metals uptake by tea from soil: What are the significant influencing factors? Catena 2021, 204, 105419. [Google Scholar] [CrossRef]
- Peng, C.Y.; Zhu, X.H.; Hou, R.Y.; Ge, G.F.; Hua, R.M.; Wan, X.C.; Cai, H.M. Aluminum and heavy metal accumulation in tea leaves: An interplay of environmental and plant factors and an assessment of exposure risks to consumers. J. Food Sci. 2018, 83, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.V. Soil-plant nutrient balance of tea crops in the northern mountainous region, Vietnam. Agric. Ecosyst. Environ. 2005, 105, 413–418. [Google Scholar] [CrossRef]
- Ma, L.F.; Shi, Y.Z.; Ruan, J.Y. Nitrogen absorption by field-grown tea plants (Camellia sinensis) in winter dormancy and utilization in spring shoots. Plant Soil 2019, 442, 127–140. [Google Scholar] [CrossRef]
- Uscola, M.; Villar-Salvador, P.; Gross, P.; Maillard, P. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees. Ann. Bot. 2015, 115, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.L.; Liu, Y.; Wu, L.Q.; Liao, H. Comprehensive analysis revealed the close relationship between n/p/k status and secondary metabolites in tea leaves. ACS Omega 2019, 4, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Kovacik, J.; Klejdus, B. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem. 2014, 142, 334–341. [Google Scholar] [CrossRef]
- Liu, M.Y.; Burgos, A.; Zhang, Q.F.; Tang, D.D.; Shi, Y.Z.; Ma, L.F.; Yi, X.Y.; Ruan, J.Y. Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3– as signaling molecules in tea plant (Camellia sinensis L.). Sci. Hortic. 2017, 218, 293–303. [Google Scholar] [CrossRef]
- Liu, Z.W.; Li, H.; Liu, J.X.; Wang, Y.; Zhuang, J. Integrative transcriptome, proteome, and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant (Camellia sinensis). Hortic. Res. 2020, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.Y.; Ma, L.F.; Shi, Y.Z. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. J. Plant Nutr. Soil Sci. 2013, 176, 450–459. [Google Scholar] [CrossRef]
- Ding, Z.T.; Jia, S.S.; Wang, Y.; Xiao, J.; Zhang, Y.F. Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiol. Biochem. 2017, 120, 30–39. [Google Scholar] [CrossRef]
- Borowiak, K.; Gasecka, M.; Mleczek, M.; Dabrowski, J.; Chadzinikolau, T.; Magdziak, Z.; Golinski, P.; Rutkowski, P.; Kozubik, T. Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea × triandra × viminalis 2 at various Zn concentrations. Acta Physiol. Plant. 2015, 37, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hajiboland, R.; Bahrami-Rad, S.; Bastani, S. Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants. Acta Biol. Hung. 2013, 64, 196–206. [Google Scholar] [CrossRef]
- Kochian, L.V. Cellular mechanisms of aluminum toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Molecular Biol. 1995, 46, 237–260. [Google Scholar] [CrossRef]
- Chen, Y.M.; Tsao, T.M.; Liu, C.C.; Lin, K.C.; Wang, M.K. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)). J. Sci. Food Agric. 2011, 91, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Tongsiri, P.; Tseng, W.Y.; Shen, Y.; Lai, H.Y. Comparison of soil properties and organic components in infusions according to different aerial appearances of tea plantations in central Taiwan. Sustainability 2020, 12, 4384. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, H.X.; Yang, C.L.; Wang, Y.D.; Xue, H.; Niu, Y.F. Rates of soil acidification in tea plantations and possible causes. Agric. Ecosyst. Environ. 2016, 233, 60–66. [Google Scholar] [CrossRef]
- Wen, B.; Li, R.; Zhao, X.; Ren, S.; Chang, Y.; Zhang, K.; Wang, S.; Guo, G.; Zhu, X. A Quadratic regression model to quantify plantation soil factors that affect tea quality. Agriculture 2021, 11, 1225. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, W.; Xu, G. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Appl. Biol. 2006, 149, 111–123. [Google Scholar] [CrossRef]
- Ruan, J.; Wu, X.; Ye, Y.; Härdter, R. Effect of potassium, magnesium and sulphur applied in different forms of fertilisers on free amino acid content in leaves of tea (Camellia sinensis L.). J. Sci. Food Agric. 1998, 76, 389–396. [Google Scholar] [CrossRef]
- Ruan, J.Y.; Ma, L.F.; Yang, Y.J. Magnesium nutrition on accumulation and transport of amino acids in tea plants. J. Sci. Food Agric. 2012, 92, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Jayaganesh, S.; Venkatesan, S. Impact of magnesium sulphate on biochemical and quality. Am. J. Food Techn. 2010, 5, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.T.; Li, H.Y.; Hu, X.F.; Li, J.; Hu, J.N.; Liu, R.; Deng, Z.Y. Effects of fertilizing with N, P, Se, and Zn on regulating the element and functional component contents and antioxidant activity of tea leaves planted in red soil. J. Agric. Food Chem. 2014, 62, 3823–3830. [Google Scholar] [CrossRef]
pH | EC | OM | WAS | Avail. N | Avail. P | Exch. K | Exch. Ca | Exch. Mg | Total Fe | Total Mn | Total Cu | Total Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | % | mg kg−1 | |||||||||||
0–20 cm depth | |||||||||||||
Mean ± SD | 4.04 ± 0.41 | 0.19 ± 0.09 | 1.44 ± 0.50 | 44.3 ± 11.3 | 12.78 ± 8.20 | 302 ± 195 | 171 ± 93 | 223.1 ± 216.0 | 120.4 ± 86.2 | 34,177 ± 6142 | 22.34 ± 9.77 | 39.61 ± 15.6 | 178.7 ± 62.0 |
Max | 5.21 | 0.40 | 2.36 | 68.75 | 30.38 | 691.41 | 489.05 | 932.28 | 458.05 | 40,202.0 | 46.7 | 100.63 | 317.3 |
Q3 2 | 4.26 | 0.25 | 1.82 | 51.86 | 16.88 | 429.45 | 215.31 | 242.48 | 153.77 | 38,590.0 | 25.7 | 42.36 | 208.4 |
Medium | 3.96 | 0.17 | 1.41 | 43.19 | 13.50 | 297.75 | 147.64 | 133.65 | 86.97 | 36,651.0 | 20.6 | 38.32 | 182.2 |
Q1 2 | 3.73 | 0.12 | 1.11 | 37.41 | 6.75 | 105.70 | 111.34 | 100.03 | 71.79 | 28,929.0 | 15.0 | 29.76 | 111.2 |
Min | 3.50 | 0.05 | 0.67 | 19.21 | 0.00 | 32.03 | 57.13 | 46.82 | 48.36 | 23,374.0 | 13.2 | 23.85 | 99.42 |
20–40 cm depth | |||||||||||||
Mean ± SD | 4.11 ± 0.41 | 0.16 ± 0.08 | 1.21 ± 0.48 | 41.0 ± 10.7 | 10.51 ± 7.63 | 230 ± 180 | 141 ± 62 | 176.2 ± 160.3 | 91.9 ± 65.3 | 34,289 ± 5975 | 21.73 ± 9.43 | 40.48 ± 15.4 | 186.6 ± 62.7 |
Max | 4.94 | 0.34 | 2.06 | 66.19 | 26.35 | 691.41 | 295.28 | 712.26 | 317.77 | 40,583 | 47.58 | 93.47 | 316.6 |
Q3 | 4.37 | 0.22 | 1.57 | 48.57 | 13.50 | 347.03 | 182.13 | 253.28 | 108.24 | 38,223 | 24.9 | 45.26 | 230.3 |
Medium | 4.00 | 0.14 | 1.18 | 39.41 | 6.75 | 205.41 | 147.02 | 118.20 | 71.63 | 37,280 | 17.85 | 37.15 | 190.7 |
Q1 | 3.80 | 0.09 | 0.73 | 35.40 | 6.75 | 75.54 | 85.51 | 67.03 | 43.54 | 30,538 | 15.46 | 29.94 | 124.3 |
Min | 3.47 | 0.07 | 0.57 | 16.83 | 0.00 | 18.05 | 38.38 | 16.69 | 34.36 | 22,645 | 13.14 | 21.40 | 98.5 |
40–60 cm depth | |||||||||||||
Mean ± SD | 4.19± 0.49 | 0.14 ± 0.09 | 1.18 ± 0.48 | 38.8 ± 9.1 | 9.75 ± 6.78 | 144 ± 122 | 138 ± 63 | 180.7 ± 218.7 | 79.82 ± 52.35 | 33,744 ± 5707 | 21.21 ± 7.06 | 38.1 ± 13.2 | 183.1 ± 65.1 |
Max | 5.43 | 0.42 | 2.30 | 64.18 | 26.24 | 471.85 | 242.37 | 795.81 | 223.39 | 39,401 | 37.04 | 86.15 | 337.4 |
Q3 | 4.46 | 0.18 | 1.42 | 41.78 | 13.50 | 211.85 | 201.46 | 229.62 | 94.46 | 37,697 | 26.07 | 43.66 | 229.3 |
Medium | 4.10 | 0.10 | 1.13 | 37.37 | 6.75 | 105.70 | 128.57 | 86.04 | 77.11 | 36,507 | 19.83 | 36.98 | 187.2 |
Q1 | 3.84 | 0.08 | 0.80 | 33.70 | 3.38 | 58.33 | 85.51 | 32.86 | 39.89 | 31,206 | 15.58 | 29.82 | 120.6 |
Min | 3.49 | 0.04 | 0.55 | 19.76 | 0.00 | 12.64 | 34.63 | 12.74 | 28.19 | 22,038 | 12.22 | 20.72 | 91.65 |
N | P | K | Ca | Mg | Fe | Mn | Cu | Zn | Al | |
---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||
Mean ± SD | 3.62 ± 0.43 | 0.38 ± 0.20 | 1.75 ± 0.27 | 0.6 ± 0.22 | 0.27 ± 0.11 | 498.9 ± 1648 | 699 ± 207.9 | 1.54 ± 3.57 | 36.3 ± 18.89 | 469.6 ± 168.8 |
Max | 4.33 | 0.78 | 2.10 | 1.02 | 0.43 | 7497.90 | 1205.83 | 14.13 | 84.51 | 1054.38 |
Q3 1 | 3.88 | 0.56 | 1.95 | 0.77 | 0.39 | 171.07 | 792.63 | 0.75 | 44.71 | 531.92 |
Medium | 3.69 | 0.27 | 1.83 | 0.52 | 0.20 | 146.21 | 656.42 | ND 2 | 30.98 | 432.84 |
Q1 1 | 3.48 | 0.24 | 1.48 | 0.41 | 0.18 | 88.85 | 553.86 | ND | 21.22 | 369.62 |
Min | 2.75 | 0.12 | 1.15 | 0.35 | 0.17 | 34.39 | 427.09 | ND | 15.24 | 266.04 |
Polyphenols | Catechins | Flavones | Free Amino Acids | Caffeine | |
---|---|---|---|---|---|
mg g−1 | % | ||||
Mean ± SD | 306.1 ± 70.6 | 267.6 ± 45.1 | 128.8 ± 17.6 | 36.66 ± 11.41 | 8.12 ± 1.2 |
Max | 451.4 | 349.6 | 156.6 | 58.13 | 9.57 |
Q3 1 | 360.2 | 290.7 | 141.3 | 43.74 | 8.95 |
Medium | 297.1 | 267.1 | 129.1 | 35.26 | 8.55 |
Q1 1 | 265.0 | 240.1 | 115.4 | 28.46 | 7.36 |
Min | 155.8 | 147.4 | 92.00 | 17.96 | 4.79 |
Factor | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
1 | 4.766357 | 2.118225 | 0.3666 | 0.3666 |
2 | 2.648132 | 0.841131 | 0.2037 | 0.5703 |
3 | 1.807001 | 0.462121 | 0.1390 | 0.7093 |
4 | 1.344880 | 0.481686 | 0.1035 | 0.8128 |
Soil Properties | Eigenvectors | |||
---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
pH | 0.96997 1 | −0.08209 | −0.10654 | 0.02801 |
EC | −0.82808 | 0.38307 | 0.05349 | 0.02407 |
OM | −0.30358 | 0.18986 | 0.80489 | 0.01164 |
WAS | −0.40294 | 0.44159 | 0.31722 | 0.54703 |
Avail. N | 0.13583 | −0.01854 | −0.71906 | −0.13002 |
Avail. P | −0.10006 | 0.75000 | 0.11796 | −0.45127 |
Exch. K | −0.18370 | 0.82988 | −0.39554 | 0.13329 |
Exch. Ca | 0.87540 | 0.31566 | −0.03509 | 0.08174 |
Exch. Mg | 0.79310 | 0.38077 | 0.02259 | 0.06946 |
Total Fe | −0.13880 | 0.44980 | −0.40353 | 0.63010 |
Total Mn | 0.72756 | 0.38698 | 0.28273 | −0.22302 |
Total Cu | 0.85063 | 0.33240 | 0.26894 | 0.12923 |
Total Zn | 0.39439 | −0.55213 | 0.20015 | 0.57520 |
Leaf Chem. Composition | PC1 | PC2 | PC3 | PC4 | ||||
---|---|---|---|---|---|---|---|---|
r 1 | p Value | r | p Value | r | p Value | r | p Value | |
Polyphenols | 0.332 | 0.1521 | 0.005 | 0.9837 | 0.413 | 0.0702 | −0.656 | 0.0017 |
Catechins | −0.077 | 0.7482 | 0.236 | 0.3162 | −0.349 | 0.1313 | −0.129 | 0.5867 |
Flavones | −0.343 | 0.1392 | 0.369 | 0.1091 | −0.470 | 0.0364 | 0.216 | 0.3604 |
Free Amino Acids | 0.715 | 0.0004 | −0.170 | 0.4737 | 0.338 | 0.1449 | −0.471 | 0.0359 |
Caffeine | 0.059 | 0.8048 | 0.214 | 0.3644 | −0.034 | 0.8881 | −0.526 | 0.0172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, W.-Y.; Lai, H.-Y. Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.). Agronomy 2022, 12, 670. https://doi.org/10.3390/agronomy12030670
Tseng W-Y, Lai H-Y. Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.). Agronomy. 2022; 12(3):670. https://doi.org/10.3390/agronomy12030670
Chicago/Turabian StyleTseng, Wen-Yu, and Hung-Yu Lai. 2022. "Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.)" Agronomy 12, no. 3: 670. https://doi.org/10.3390/agronomy12030670
APA StyleTseng, W.-Y., & Lai, H.-Y. (2022). Comprehensive Analysis Revealed the Specific Soil Properties and Foliar Elements Respond to the Quality Composition Levels of Tea (Camellia sinensis L.). Agronomy, 12(3), 670. https://doi.org/10.3390/agronomy12030670