Current Utility of Arbuscular Mycorrhizal Fungi and Hydroxyapatite Nanoparticles in Suppression of Tomato Root-Knot Nematode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Hydroxyapatite Nanoparticles (n-HAP)
2.2. Inoculum Propagation of Meloidogyne incognita (Kofoid and White) Chitwood
2.3. Inoculum of Mycorrhizal Fungi
2.4. Raising of Tomato Plants
2.5. In Vitro Assessment of HAP Nanoparticles’ Effect on M. incognita Eggs Hatching and Juveniles’ Mortality
2.6. Design of the Greenhouse Experiment
2.7. Parameters’ Assessment
2.7.1. Plant Analysis
2.7.2. Meloidogyne incognita Assay
2.7.3. Assessment of Mycorrhizal Parameters
2.8. Statistical Analyses
3. Results
3.1. Characterization of Hydroxyapatite Nanoparticles (n-HAP)
3.2. Effect of n-HAP on Egg Hatching and Juvenile Mortality of Meloidogyne incognita In Vitro
3.3. In Vivo Effect of n-HAP and Mycorrhizal Fungi on Tomato Plants Infected with M. incognita
3.3.1. Plant Biomass
3.3.2. Effect of Mycorrhizal and n-HAP Treatments on Nutrients’ Status in Tomato Plants
3.3.3. Effect of Mycorrhizal Fungi and n-HAP on Nematode Parameters
3.3.4. Mycorrhizal Colonization Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, W.; Jairajpuri, M.S. Mononchida: The Predatory Soil Nematodes; Brill: Leiden, The Netherlands, 2010; Volume 7. [Google Scholar]
- Waller, P.J. Sustainable nematode parasite control strategies for ruminant livestock by grazing management and biological control. Anim. Feed Sci. Technol. 2006, 126, 277–289. [Google Scholar] [CrossRef]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; den Nijs, L.J.M.F.; Hockland, S.; Maafi, Z.T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Talavera, M.; Sayadi, S.; Chirosa-Rios, M.; Salmeron, T.; Flor-Peregrin, E.; Verdejo-Lucas, S. Perception of the impact of root-knot nematode-induced diseases in horticultural protected crops of south-eastern Spain. Nematology 2012, 14, 517–527. [Google Scholar] [CrossRef]
- Wesemael, W.; Viaene, N.; Moens, M. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 2011, 13, 3–16. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Nicola, N.L.; Ferris, H.; Zalom, F.G. Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Appl. Soil Ecol. 2009, 41, 107–117. [Google Scholar] [CrossRef]
- Stear, M.J.; Doligalska, M.; Donskow-Schmelter, K. Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology 2007, 134, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, V.A. Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 2001, 82, 3057–3068. [Google Scholar]
- Poveda, J.; Abril-Urias, P.; Escobar, C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front. Microbiol. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Schüβler, A.; Schwarzott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef] [Green Version]
- Crossay, T.; Majorel, C.; Redecker, D.; Gensous, S.; Medevielle, V.; Durrieu, G.; Cavaloc, Y.; Amir, H. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 2019, 29, 325–339. [Google Scholar] [CrossRef]
- Singh, I.; Giri, B. Arbuscular mycorrhiza mediated control of plant pathogens. In Mycorrhiza-Nutrient Uptake, Biocontrol; Ecorestoration; Springer: Cham, Switzerland, 2017; pp. 131–160. [Google Scholar]
- Da Silva Campos, M.A. Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: A sustainable alternative. Crop Prot. 2020, 135, 105203. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, P.; Messmer, M.M. Breeding for mycorrhizal symbiosis: Focus on disease resistance. Euphytica 2017, 213, 113. [Google Scholar] [CrossRef]
- Jacott, C.N.; Murray, J.D.; Ridout, C.J. Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy 2017, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Nafady, N.A.; Sultan, R.; El-Zawahry, A.M.; Mostafa, Y.S.; Alamri, S.; Mostafa, R.G.; Hashem, M.; Hassan, E.A. Effective and Promising Strategy in Management of Tomato Root-Knot Nematodes by Trichoderma harzianum and Arbuscular Mycorrhizae. Agronomy 2022, 12, 315. [Google Scholar] [CrossRef]
- Prieto, K.R.; Echaide-Aquino, F.; Huerta-Robles, A.; Valério, H.P.; Macedo-Raygoza, G.; Prado, F.M.; Medeiros, M.H.; Brito, H.F.; da Silva, I.G.; Felinto, M.C.C.; et al. Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In Plant Macronutrient Use Efficiency; Academic Press: Cambridge, MA, USA, 2017; pp. 285–306. [Google Scholar]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot, E. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.; Khanam, Z. Phyto-nanotechnology and agriculture. In Phytonanotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 289–301. [Google Scholar]
- Tian, H.; Kah, M.; Kariman, K. Are nanoparticles a threat to mycorrhizal and rhizobial symbioses? A critical review. Front. Microbiol. 2019, 10, 1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci. Rep. 2019, 9, 4015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pai, S.; Kini, M.S.; Selvaraj, R. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites. Environ. Sci. Pollut. Res. 2019, 28, 11835–11849. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Kotnala, S. Fabrication of chitosan-hydroxyapatite nano-adsorbent for removal of norfloxacin from water: Isotherm and kinetic studies. Mater. Today Proc. 2021, in press. [CrossRef]
- Chitwood, B.G. ‘Root-knot nematodes’. Part 1. A revision of the genus Meloidogyne Goeldi, 1887. Proc. Helminthol. Soc. Wash. 1949, 16, 90–114. [Google Scholar]
- Sasser, J.N. Identification and host-parasite relationships of certain root-knot nematodes (Meloidogyne spp.). In Technical Bulletin. Maryland Agricultural Experiment Station; CABI: Wallingford, UK, 1954; Part A-77, pp. 3–31. [Google Scholar]
- Southey, J.F. Laboratory Methods for Work with Plant and Soil Nematodes; Ministry of Agriculture, Fisheries and Food: London, UK, 1986; p. 202. [Google Scholar]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Alam, M.M. A simple method for in vitro screening of chemicals for nematoxicity. Int. Nematol. Netw. Newsl. 1985, 2, 6. [Google Scholar]
- Goodey, T. Soil and freshwater nematodes. In Soil Freshwater Nematodes; John Wiley & Sons, Inc.: New York, NY, USA, 1963. [Google Scholar]
- Bybd, D.W., Jr.; Kirkpatrick, T.; Barker, K. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 1983, 15, 142. [Google Scholar] [PubMed]
- Hussey, R.S. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematodes; North Carolina State University Graphics: Raleigh, NC, USA, 1978; Volume 111. [Google Scholar]
- Philips, J.M.; Hayman, D.S. Improved procedure for declaring and staining parasitic and VAM fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA dún système radiculaire. Recherche de méthodes déstimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Kumar, Y.; Yadav, B.C. Plant-parasitic nematodes: Nature’s most successful plant parasite. Int. J. Res. Rev. 2020, 7, 379–386. [Google Scholar]
- Tóthné Bogdányi, F.; Boziné Pullai, K.; Doshi, P.; Erdős, E.; Gilián, L.D.; Lajos, K.; Leonetti, P.; Nagy, P.I.; Pantaleo, V.; Petrikovszki, R.; et al. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes—A Review. Microorganisms 2021, 9, 2130. [Google Scholar] [CrossRef] [PubMed]
- Bosco, R.; Iafisco, M.; Tampieri, A.; Jansen, J.A.; Leeuwenburgh, S.C.; Van Den Beucken, J.J. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl. Surf. Sci. 2015, 328, 516–524. [Google Scholar] [CrossRef]
- Tran, T.Q.; Pham Minh, D.; Phan, T.S.; Pham, Q.N.; Nguyen Xuan, H. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chem. Eng. Sci. 2020, 228, 115975. [Google Scholar] [CrossRef]
- Bee, S.-L.; Bustami, Y.; Ul-Hamid, A.; Lim, K.; Abdul Hamid, Z.A. Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 2021, 32, 106. [Google Scholar] [CrossRef] [PubMed]
- Ardakani, A.S. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 2013, 15, 671–677. [Google Scholar] [CrossRef]
- El-Ashry, R.M.; El-Saadony, M.T.; El-Sobki, A.E.; El-Tahan, A.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Saad, A.M.; Elshaer, N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 2021, 29, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Habash, S.; Al-Banna, L. Phosphonate fertilizers suppressed root knot nematodes Meloidogyne javanica and M. incognita. J. Nematol. 2011, 43, 95. [Google Scholar] [PubMed]
- Hemmati, S.; Saeedizadeh, A. Root-knot nematode, Meloidogyne javanica, in response to soil fertilization. Braz. J. Biol. 2019, 80, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedizadeh, A.; Niasti, F.; Baghaei, M.A.; Hasanpour, S.; Agahi, K. Effects of fertilizers on development of root-knot nematode, Meloidogyne javanica. Int. J. Agric. Biol. 2020, 23. [Google Scholar] [CrossRef]
- Hart, M.; Ehret, D.L.; Krumbein, A.; Leung, C.; Murch, S.; Turi, C.; Franken, P. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 2015, 25, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Calabi-Floody, M.; Medina, J.; Rumpel, C.; Condron, L.M.; Hernandez, M.; Dumont, M.; de la Luz Mora, M. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 2018, 147, 119–157. [Google Scholar]
- Saleem, H.; Zaidi, S.J. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef] [PubMed]
- Vos, C.M.; Tesfahun, A.N.; Panis, B.; De Waele, D.; Elsen, A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl. Soil Ecol. 2012, 61, 1–6. [Google Scholar] [CrossRef]
- Sharma, M.; Saini, I.; Kaushik, P.; Al Dawsari, M.M.; Al Balawi, T.; Alam, P. Mycorrhizal Fungi and Pseudomonas fluorescens Application Reduces Root-Knot Nematode (Meloidogyne javanica) Infestation in Eggplant. Saudi J. Biol.Sci. 2021, 28, 3685–3691. [Google Scholar] [CrossRef]
- Detrey, J.; Cognard, V.; Djian-Caporalino, C.; Marteu, N.; Doidy, J.; Pourtau, N.; Vriet, C.; Maurousset, L.; Bouchon, D.; Clause, J. Growth and root-knot nematode infection of tomato are influenced by mycorrhizal fungi and earthworms in an intercropping cultivation system with leeks. Appl. Soil Ecol. 2022, 169, 104181. [Google Scholar] [CrossRef]
- Vos, C.; Schouteden, N.; van Tuinen, D.; Chatagnier, O.; Elsen, A.; De Waele, D.; Panis, B.; Gianinazzi-Pearson, V. Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol. Biochem. 2013, 60, 45–54. [Google Scholar] [CrossRef]
- Diedhiou, P.M.; Hallmann, J.; Oerke, E.C.; Dehne, H.W. Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 2003, 13, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Marro, N.; Caccia, M.; López-Ráez, J.A. Are strigolactones a key in plant–parasitic nematodes interactions? An intriguing question. Plant Soil 2021, 462, 591–601. [Google Scholar] [CrossRef]
- Nafady, N.A.; Hashem, M.; Hassan, E.A.; Ahmed, H.A.; Alamri, S.A. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control. 2019, 38, 104049. [Google Scholar] [CrossRef]
- Hao, Z.; Xie, W.; Chen, B. Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 2019, 11, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesaro, P.; Massa, N.; Cantamessa, S.; Todeschini, V.; Bona, E.; Berta, G.; Barbato, R.; Lingua, G. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis. Mycorrhiza 2020, 30, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, S.; Corneo, P.E.; Mariotte, P.; Kertesz, M.A.; Dijkstra, F.A. Effect of crop rotation on mycorrhizal colonization and wheat yield under different fertilizer treatments. Agric. Ecosyst. Environ. 2017, 247, 130–136. [Google Scholar] [CrossRef]
- Yazici, M.A.; Asif, M.; Tutus, Y.; Ortas, I.; Ozturk, L.; Lambers, H.; Cakmak, I. Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant Soil 2021, 468, 19–35. [Google Scholar] [CrossRef]
Treatments | Nematode Hatching | |||||
---|---|---|---|---|---|---|
Egg Hatching after 24 h | Hatching Inhibition% | Egg Hatching after 48 h | Hatching Inhibition% | Egg Hatching after 72 h | Hatching Inhibition% | |
50 ppm n-HAP | 42.33 ± 5.03 b | 59.16 | 46.33 ± 5.03 b | 69.71 | 72.33 ± 21.39 b | 62.20 |
150 ppm n-HAP | 29.00 ± 8.54 c | 72.03 | 40.66 ± 5.51 b | 73.42 | 52.00 ± 5.57 bc | 72.82 |
200 ppm n-HAP | 20.00 ± 5.35 c | 80.71 | 24.00 ± 6.68 c | 84.31 | 31.00 ± 6.53 c | 83.80 |
Distilled water | 103.67 ± 19.34 a | - | 153.00 ± 15.12 a | - | 191.33 ± 3.68 a | - |
LSD | 24.95 | - | 116.41 | - | 22.52 | - |
P | 0.0002 | - | 0.0000 | - | 0.0000 | - |
Treatments | After 24 h | After 48 h | After 72 h | |||
---|---|---|---|---|---|---|
Dead J2s | * Mortality% | Dead J2s | * Mortality% | Dead J2s | * Mortality% | |
50 ppm n-HAP | 170.00 ± 3. 04 b | 180.16 | 191.67 ± 9.10 a | 210.01 | 200.00 ± 0.00 a | 238.26 |
150 ppm n-HAP | 193.33 ± 9.07 a | 193.33 | 199.00 ± 1.73 a | 199.00 | 200.00 ± 0.00 a | 200.00 |
200 ppm n-HAP | 195.67 ± 7.51 a | 195.67 | 200.00 ± 0.00 a | 200.00 | 200.00 ± 0.00 a | 200.00 |
Distilled water | 12.67 ± 3.06 c | - | 16.67 ± 4.73 b | - | 27.67 ± 11.50 b | - |
LSD | 36.95 | - | 11.517 | - | 10.829 | - |
P | 0.0000 | - | 0.0000 | - | 0.0000 | - |
Treatment | Root Length (cm) | Shoot Length (cm) | Dry Weight (g) | Leaf Area (cm2) |
---|---|---|---|---|
C | 20.50 ± 1.29 a | 39.35 ± 2.05 b | 1.21 ± 0.30 a | 36.25 ± 0.93 a |
M | 34.75 ± 2.07 c | 47.93 ± 2.39 c | 1.78 ± 0.26 bc | 51.65 ± 2.71 c |
N | 17.52 ± 1.18 a | 29.00 ± 2.29 a | 1.05 ± 0.33 a | 33.89 ± 1.68 a |
Np | 27.00 ± 1.70 b | 46.75 ± 1.89 c | 1.70 ± 0.42 b | 44.22 ± 1.56 b |
MN | 33.77 ± 1.46 c | 37.02 ± 1.67 b | 2.29 ± 0.36 d | 49.67 ± 1.51 c |
NpN | 21.67 ± 1.48 a | 53.50 ± 2.19 b | 2.15 ± 0.31 cd | 42.76 ± 1.45 b |
MNpN | 37.98 ± 1.83 c | 48.10 ± 1.07 c | 2.39 ± 0.24 d | 50.50 ± 1.05 c |
Treatments | No. of Galls/Root System | No. of Juveniles in Soil (250 g) | Build-Up | RGI ** | Reduction% |
---|---|---|---|---|---|
N | 301.67 ± 63.88 a | 1406.33 ± 191.06 a | 43.93 | 5.00 | - |
MN | 84.33 ± 4.62 b | 1013.67 ± 7.57 bc | 3.63 | 4.00 | 91.73 |
NpN | 62.67 ± 4.73 c | 887.33 ± 211.75 c | 3.62 | 4.00 | 92.22 |
MNpN | 27.33 ± 4.04 d | 1228.33 ± 2.52 ab | 2.91 | 3.33 | 93.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, S.; Nafady, N.A.; El-Sagheer, A.M.; El-Aal, M.A.; Mostafa, Y.S.; Hashem, M.; Hassan, E.A. Current Utility of Arbuscular Mycorrhizal Fungi and Hydroxyapatite Nanoparticles in Suppression of Tomato Root-Knot Nematode. Agronomy 2022, 12, 671. https://doi.org/10.3390/agronomy12030671
Alamri S, Nafady NA, El-Sagheer AM, El-Aal MA, Mostafa YS, Hashem M, Hassan EA. Current Utility of Arbuscular Mycorrhizal Fungi and Hydroxyapatite Nanoparticles in Suppression of Tomato Root-Knot Nematode. Agronomy. 2022; 12(3):671. https://doi.org/10.3390/agronomy12030671
Chicago/Turabian StyleAlamri, Saad, Nivien A. Nafady, Atef M. El-Sagheer, Mohamed Abd El-Aal, Yasser S. Mostafa, Mohamed Hashem, and Elhagag A. Hassan. 2022. "Current Utility of Arbuscular Mycorrhizal Fungi and Hydroxyapatite Nanoparticles in Suppression of Tomato Root-Knot Nematode" Agronomy 12, no. 3: 671. https://doi.org/10.3390/agronomy12030671
APA StyleAlamri, S., Nafady, N. A., El-Sagheer, A. M., El-Aal, M. A., Mostafa, Y. S., Hashem, M., & Hassan, E. A. (2022). Current Utility of Arbuscular Mycorrhizal Fungi and Hydroxyapatite Nanoparticles in Suppression of Tomato Root-Knot Nematode. Agronomy, 12(3), 671. https://doi.org/10.3390/agronomy12030671