Exponential Fertilization Regimes Improved Growth and Nutrient Status of Quercus nuttallii Container Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Conditions and Experimental Material
2.2. Experimental Design
2.3. Seedling Samplings
2.4. Statistical Analysis
3. Results
3.1. Seedling Height, Root Collar Diameter, Total Biomass, and Proportion of the Plant Structure
3.2. Root System
3.3. N, K, and P Mass Fraction
3.4. N, P, and K Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, M.M.; Biswas, J.C.; Islam, M.R.; Islam, A.; Kabir, M.S. Effect of long-term chemical and organic fertilization on rice productivity, nutrient use-efficiency, and balance under a rice-fallow-rice system. J. Plant Nutr. 2019, 42, 2901–2914. [Google Scholar] [CrossRef]
- Duan, M.; Chang, S.X. Nitrogen fertilization improves the growth of lodgepole pine and white spruce seedlings under low salt stress through enhancing photosynthesis and plant nutrition. For. Ecol. Manag. 2017, 404, 197–204. [Google Scholar] [CrossRef]
- Xue, C.X.; Zhang, T.T.; Yao, S.B.; Guo, Y.J. Effects of households’ fertilization knowledge and technologies on over-fertilization: A case study of grape growers in Shaanxi, China. Land 2020, 9, 321. [Google Scholar] [CrossRef]
- Ingestad, T.; Lund, A.B. Theory and techniques for steady state mineral nutrition and growth of plants. Scand. J. For. Res. 1986, 1, 439–453. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; RöMheld, V.; Horlacher, D.; Schulz, R.; Böning-Zilkens, M.; Wang, P.; Claupein, W. Synchronizing N supply from soil and fertilizer and n demand of winter wheat by an improved Nmin regime. Nutr. Cycl. Agroecosys. 2006, 74, 91–98. [Google Scholar] [CrossRef]
- Ingestad, T. New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma 1987, 40, 237–252. [Google Scholar] [CrossRef]
- Timmer, V.R.; Miller, B.D. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings. New For. 1991, 5, 335–348. [Google Scholar] [CrossRef]
- Timmer, V.R. Exponential nutrient loading: A new fertilization technique to improve seedling performance on competitive sites. New For. 1996, 13, 275–295. [Google Scholar]
- Salifu, K.F.; Timmer, V.R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture. Can. J. For. Res. 2003, 33, 1287–1294. [Google Scholar] [CrossRef]
- Hawkins, B.J.; Burgess, D.; Mitchell, A.K. Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions. Can. J. For. Res. 2005, 35, 1002–1016. [Google Scholar] [CrossRef]
- Quoreshi, A.M.; Timmer, V.R. Exponential fertilization increases nutrient uptake and ectomycorrhizal development of black spruce seedlings. Can. J. For. Res. 1998, 28, 674–682. [Google Scholar] [CrossRef]
- Mcalister, J.A.; Timmer, V.R. Nutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment. Tree Physiol. 1998, 18, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, D. Western hemlock and Douglas-fir seedling development with exponential rates of nutrient addition. For. Sci. 1991, 37, 54–67. [Google Scholar]
- Dumroese, R.K.; Page-Dumroese, D.S.; Salifu, K.F.; Jacobs, D.F. Exponential fertilization of Pinus monticola seedlings: Nutrient uptake efficiency, leaching fractions, and early outplanting performance. Can. J. For. Res. 2005, 35, 2961–2967. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.A.; Conner, W.H.; Gardiner, E.S.; Schweitzer, C.J.; Ezell, A.W. Recognizing and overcoming difficult site conditions for afforestation of bottomland hardwoods. Ecol. Restor. 2004, 22, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Larsen, D.R.; Dey, D.C.; Faust, T. A stocking diagram for midwestern eastern cottonwood-silver maple-american sycamore bottomland forests. North. J. Appl. For. 2010, 27, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Ma, C.; Xiao, J.; Li, X.G.; Wang, S.F.; Chen, G.C. Co-planting of Quercus nuttallii, Quercus pagoda with Solanum nigrum enhanced their phytoremediation potential to multi-metal contaminated soil. Int. J. Phytoremediat. 2021, 23, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.L.; Zhou, B.Z.; Zhou, Y. Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. J. Appl. Ecol. 2017, 28, 1482–1488. (In Chinese) [Google Scholar]
- Mccurry, J.R.; Gray, M.J.; Mercker, D.C. Early growing season flooding influence on seedlings of three common bottomland hardwood species in western tennessee. J. Fish Wildl. Manag. 2010, 1, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.C.; Gardiner, E.S.; Kabrick, J.M.; Stanturf, J.A.; Jacobs, D.F. Innovations in afforestation of agricultural bottomlands to restore native forests in the eastern USA. Scand. J. For. Res. 2010, 25, 31–42. [Google Scholar] [CrossRef]
- Baietto, M.; Wilson, A.D. Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions. Hortic. Sci. 2010, 45, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.S.; Loewenstein, E.F.; Chappelka, A.H. Effect of animal browse protection and fertilizer application on the establishment of planted Nuttall oak seedlings. New For. 2006, 32, 133–143. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Juliette, A.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105–116. [Google Scholar] [CrossRef]
- Thilakarathna, S.K.; Hernandez-Ramirez, G.; Puurveen, D.; Kryzanowski, L.; Lohstraeter, G.; Powers, L.A.; Quan, N.Y.; Tenuta, M. Nitrous oxide emissions and nitrogen use efficiency in wheat: Nitrogen fertilization timing and formulation, soil nitrogen, and weather effects. Soil Sci. Soc. Am. J. 2020, 84, 1910–1927. [Google Scholar] [CrossRef]
- Högberg, P.; Näsholm, T.; Franklin, O.; Högberg, M.N. Tamm Review: On the nature of the nitrogen limitation to plant growth in fennoscandian boreal forests. For. Ecol. Manag. 2017, 403, 161–185. [Google Scholar] [CrossRef] [Green Version]
- Valinger, E.; Sjögren, H.; Nord, G.; Cedergren, J. Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden. Scand. J. For. Res. 2019, 34, 33–38. [Google Scholar] [CrossRef]
- Castro-Garibay, S.L.; Aldrete, A.; López-Upton, J.; Ordáz-Chaparro, V.M. Effect of container, substrate and fertilization on Pinus Greggii Var. australis growth in the Nursery. Agrociencia 2018, 52, 115–127. [Google Scholar]
- Chen, L.; Wang, C.S.; Dell, B.; Zhao, Z.G.; Guo, J.J.; Xu, D.P.; Zeng, J. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization. J. For. Res. 2018, 29, 111–119. [Google Scholar] [CrossRef]
- Pokharel, P.; Kwak, J.H.; Chang, S.X. Growth and nitrogen uptake of jack pine seedlings in response to exponential fertilization and weed control in reclaimed soil. Biol. Fert. Soils 2017, 53, 701–713. [Google Scholar] [CrossRef]
- Li, X.W.; Gao, Y.; Wei, H.Y.; Xia, H.T.; Chen, Q.X. Growth, biomass accumulation and foliar nutrient status in fragrant rosewood (Dalbergia odorifera T.C. Chen) seedlings cultured with conventional and exponential fertilizations under different photoperiod regimes. Soil Sci. Plant Nutr. 2017, 63, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.T.; Chu, M.Y.; Lin, Y.S.; Kung, K.N.; Lin, W.C.; Lee, M.J. Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas. Forests 2020, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Hedwall, P.O.; Gong, P.C.; Ingerslev, M.; Bergh, J. Fertilization in northern forests—Biological, economic and environmental constraints and possibilities. Scand. J. For. Res. 2014, 29, 301–311. [Google Scholar] [CrossRef]
- Villar-Salvador, P.; Peñuelas, J.L.; Nicolás-Peragón, J.L.; Benito, L.F.; Domínguez-Lerena, B.S. Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For. 2013, 44, 733–751. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, R.R.; Zhang, H. Effects of exponential fertilization on biomass and nitrogen accumulation of Carya illinoensis seedlings. Chin. J. Ecol. 2018, 37, 2920–2926. (In Chinese) [Google Scholar]
- Tim, L. Effect of nitrogen fertilization and residual nitrogen on biomass yield of switchgrass. BioEnergy Res. 2017, 10, 648–656. [Google Scholar]
- Hu, Y.B.; Li, C.M.; Jiang, L.P.; Liang, D.Y.; Zhao, X.Y. Growth performance and nitrogen allocation within leaves of two poplar clones after exponential and conventional nitrogen applications. Plant Physiol. Biochem. 2020, 154, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.F.; Zhou, D.X.; Zhao, Y. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hairformation and root system development. Plant Signal. Behav. 2016, 11, 1559–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, H.A.; Men, S.N.; Hussain, S.; Zhang, Q.W.; Ashraf, U.; Anjum, S.A.; Ali, I.; Wang, L.C. Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants 2020, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Villordon, A.Q.; Ginzberg, I.; Firon, N. Root architecture and root and tuber crop productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.L.; Fahey, T.J.; Xue, S.; Liu, F. Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 2013, 171, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Qu, L.; Quoreshi, A.M.; Koike, T. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant Soil 2003, 255, 293–302. [Google Scholar] [CrossRef]
- Lee, K.H.; Jose, S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For. Ecol. Manag. 2003, 185, 263–273. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Z.; Li, X.P.; Sun, Y.; Zhang, X.P.; Liang, A.Z. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant Soil 2010, 333, 325–336. [Google Scholar] [CrossRef]
- Lucander, K.; Zanchi, G.; Akselsson, C.; Belyazid, S. The effect of nitrogen fertilization on tree growth, soil organic carbon and nitrogen leaching—A modeling study in a steep nitrogen deposition gradient in sweden. Forests 2021, 12, 298. [Google Scholar] [CrossRef]
- Kakabouki, I.P.; Roussis, I.; Hela, D.; Papastylianou, P.; Folina, A.; Bilalis, D. Root growth dynamics and productivity of quinoa (Chenopodium quinoa Willd.) in response to fertilization and soil tillage. Folia Hortic. 2019, 31, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Razaq, M.; Zhang, P.; Shen, H.L. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 2017, 12, e0171321. [Google Scholar]
- Wright, S.J.; Yavitt, J.B.; Wurzburger, N.; Turner, B.L.; Tanner, E.V.J.; Sayer, E.J.; Santiago, L.S.; Kaspari, M.; Hedin, L.O.; Harms, K.E.; et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 2011, 92, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 2019, 89, 1382–1399. [Google Scholar] [CrossRef]
- Li, G.L.; Wang, J.X.; Oliet, J.A.; Jacobs, D.F. Combined pre-hardening and fall fertilization facilitates N storage and field performance of Pinus tabulaeformis seedlings. iForest 2016, 9, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.L.; Fan, H.H.; Xuan, H.F.; Mgelwa, A.S.; Chen, S.P. Distinct growth and nutrient status responses to fertilization regimes in two generations of Chinese fir seedlings. Forests 2019, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Salifu, K.F.; Timmer, V.R. Nitrogen retranslocation response of young Picea mariana to nitrogen-15 supply. Soil Sci. Soc. Am. J. 2003, 67, 309–317. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 36–47. [Google Scholar] [CrossRef]
- Hassan, M.K.; Mcinroy, J.A.; Kloepper, J.W. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Amelung, W.; Lehmann, J.; Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Li, J.Y.; Dong, W.Y.; Wei, H.X.; He, C.X. Late-season fluxes of ammonium and nitrate in roots of two poplar clones pretreated with nutrient addition. Int. J. Agric. Biol. 2017, 19, 1525–1534. [Google Scholar]
- Wei, H.X.; Ren, J.; Zhou, J.H. Effect of exponential fertilization on growth and nutritional status in Buddhist pine (Podocarpus macrophyllus [Thunb.] D. Don) seedlings cultured in natural and prolonged photoperiods. Soil Sci. Plant Nutr. 2013, 59, 933–941. [Google Scholar] [CrossRef] [Green Version]
Time | Fertilizer Added (mg N/Seedling) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CK | C300 | C500 | C700 | C900 | E300 | E500 | E700 | E900 | |
1 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 11.16 | 15.02 | 17.88 | 20.17 |
2 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 12.04 | 16.61 | 20.13 | 23.03 |
3 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 13.17 | 18.36 | 22.68 | 26.31 |
4 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 14.01 | 20.32 | 25.53 | 30.04 |
5 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 15.11 | 22.46 | 28.75 | 34.32 |
6 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 16.12 | 24.84 | 32.37 | 39.20 |
7 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 17.58 | 27.47 | 36.45 | 44.78 |
8 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 18.97 | 30.38 | 41.05 | 51.14 |
9 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 20.46 | 33.60 | 46.23 | 58.41 |
10 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 22.06 | 37.16 | 52.05 | 66.71 |
11 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 23.81 | 41.09 | 58.61 | 76.20 |
12 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 25.68 | 45.44 | 66.01 | 87.04 |
13 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 27.70 | 50.25 | 74.32 | 99.41 |
14 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 29.88 | 55.58 | 83.70 | 113.55 |
15 week | 0 | 20.00 | 33.33 | 46.67 | 60.00 | 32.23 | 61.46 | 94.24 | 129.68 |
Total | 0 | 300 | 500 | 700 | 900 | 300 | 500 | 700 | 900 |
N Mass Fraction (g·kg−1) | Treatment | Root | Stem | Leaf |
CK | 36.31 ± 3.74 e | 27.95 ± 3.95 e | 68.36 ± 6.87 cd | |
C300 | 49.26 ± 3.79 de | 54.96 ± 3.74 bc | 97.49 ± 7.61 bc | |
C500 | 64.04 ± 7.02 cd | 50.48 ± 7.74 bc | 45.89 ± 6.03 d | |
C700 | 76.76 ± 3.31 bc | 67.11 ± 6.05 a | 88.82 ± 10.90 bc | |
C900 | 66.49 ± 3.06 cd | 51.46 ± 4.70 bc | 72.04 ± 12.17 cd | |
E300 | 59.35 ± 3.32 cd | 38.97 ± 3.48 d | 139.35 ± 10.83 a | |
E500 | 76.39 ± 2.62 bc | 44.79 ± 1.56 c | 114.68 ± 11.12 ab | |
E700 | 86.59 ± 10.22 b | 68.60 ± 2.77 a | 133.93 ± 7.73 a | |
E900 | 122.98 ± 6.86 a | 62.44 ± 8.03 ab | 132.72 ± 13.69 a | |
P Mass Fraction (g·kg−1) | CK | 3.15 ± 0.23 a | 1.06 ± 0.07 | 1.15 ± 0.08 cd |
C300 | 1.80 ± 0.24 c | 1.02 ± 0.09 | 1.29 ± 0.12 cd | |
C500 | 1.44 ± 0.41 cd | 1.10 ± 0.39 | 0.92 ± 0.38 d | |
C700 | 1.30 ± 0.19 d | 1.05 ± 0.15 | 1.23 ± 0.33 cd | |
C900 | 1.79 ± 0.11 c | 0.86 ± 0.26 | 1.49 ± 0.51 bc | |
E300 | 2.23 ± 0.09 b | 0.92 ± 0.31 | 1.77 ± 0.11 ab | |
E500 | 1.81 ± 0.12 c | 0.92 ± 0.10 | 1.47 ± 0.31 bc | |
E700 | 1.67 ± 0.04 c | 0.88 ± 0.39 | 1.61 ± 0.10 ab | |
E900 | 1.43 ± 0.08 cd | 1.06 ± 0.99 | 1.91 ± 0.30 a | |
K Mass Fraction (g·kg−1) | CK | 9.61 ± 0.18 a | 2.88 ± 0.32 ab | 6.15 ± 0.10 a |
C300 | 6.63 ± 0.17 bc | 3.16 ± 0.52 a | 7.95 ± 0.05 b | |
C500 | 6.36 ± 0.39 bc | 2.19 ± 0.14 d | 6.47 ± 0.09 c | |
C700 | 6.24 ± 0.33 b | 1.99 ± 0.03 d | 6.07 ± 0.04 a | |
C900 | 6.55 ± 0.20 bc | 2.66 ± 0.10 bc | 6.08 ± 0.11 a | |
E300 | 7.53 ± 0.22 bc | 2.28 ± 0.08 cd | 5.48 ± 0.10 d | |
E500 | 6.61 ± 0.05 bc | 2.01 ± 0.13 d | 5.65 ± 0.12 d | |
E700 | 7.81 ± 1.02 c | 1.43 ± 0.10 e | 5.42 ± 0.15 d | |
E900 | 7.77 ± 0.66 bc | 1.23 ± 0.05 e | 6.02 ± 0.09 a |
N Content (mg/seedling) | Treatment | Root | Stem | Leaf | Total |
CK | 36.31 ± 3.74 e | 27.95 ± 3.95 e | 68.36 ± 6.87 cd | 741.65 ± 73.42 e | |
C300 | 49.26 ± 3.79 de | 54.96 ± 3.74 bc | 97.49 ± 7.61 bc | 1760.66 ± 70.14 d | |
C500 | 64.04 ± 7.02 cd | 50.48 ± 7.74 bc | 45.89 ± 6.03 d | 1629.21 ± 164.11 d | |
C700 | 76.76 ± 3.31 bc | 67.11 ± 6.05 a | 88.82 ± 10.90 bc | 2474.80 ± 58.58 c | |
C900 | 66.49 ± 3.06 cd | 51.46 ± 4.70 bc | 72.04 ± 12.17 cd | 1958.89 ± 83.93 d | |
E300 | 59.35 ± 3.32 cd | 38.97 ± 3.48 d | 139.35 ± 10.83 a | 1804.45 ± 105.74 d | |
E500 | 76.39 ± 2.62 bc | 44.79 ± 1.56 c | 114.68 ± 11.12 ab | 2499.71 ± 125.62 c | |
E700 | 86.59 ± 10.22 b | 68.60 ± 2.77 a | 133.93 ± 7.73 a | 3068.46 ± 123.67 b | |
E900 | 122.98 ± 6.86 a | 62.44 ± 8.03 ab | 132.72 ± 13.69 a | 3862.48 ± 308.42 a | |
P Content (mg/seedling) | CK | 3.15 ± 0.23 a | 1.06 ± 0.07 | 1.15 ± 0.08 cd | 34.42 ± 0.51 de |
C300 | 1.80 ± 0.24 c | 1.02 ± 0.09 | 1.29 ± 0.12 cd | 32.34 ± 1.19 e | |
C500 | 1.44 ± 0.41 cd | 1.10 ± 0.39 | 0.92 ± 0.38 d | 39.68 ± 2.57 cd | |
C700 | 1.30 ± 0.19 d | 1.05 ± 0.15 | 1.23 ± 0.33 cd | 38.65 ± 0.33 cd | |
C900 | 1.79 ± 0.11 c | 0.86 ± 0.26 | 1.49 ± 0.51 bc | 42.13 ± 0.57 bc | |
E300 | 2.23 ± 0.09 b | 0.92 ± 0.31 | 1.77 ± 0.11 ab | 38.13 ± 1.21 cd | |
E500 | 1.81 ± 0.12 c | 0.92 ± 0.10 | 1.47 ± 0.31 bc | 45.18 ± 2.27 b | |
E700 | 1.67 ± 0.04 c | 0.88 ± 0.39 | 1.61 ± 0.10 ab | 45.21 ± 1.42 b | |
E900 | 1.43 ± 0.08 cd | 1.06 ± 0.99 | 1.91 ± 0.30 a | 54.11 ± 2.83 a | |
K Content (mg/seedling) | CK | 9.61 ± 0.18 a | 2.88 ± 0.32 ab | 6.15 ± 0.10 a | 104.75 ± 2.62 d |
C300 | 6.63 ± 0.17 bc | 3.16 ± 0.52 a | 7.95 ± 0.05 b | 141.69 ± 0.40 b | |
C500 | 6.36 ± 0.39 bc | 2.19 ± 0.14 d | 6.47 ± 0.09 c | 148.26 ± 12.94 ab | |
C700 | 6.24 ± 0.33 b | 1.99 ± 0.03 d | 6.07 ± 0.04 a | 138.61 ± 2.25 b | |
C900 | 6.55 ± 0.20 bc | 2.66 ± 0.10 bc | 6.08 ± 0.11 a | 162.41 ± 1.04 a | |
E300 | 7.53 ± 0.22 bc | 2.28 ± 0.08 cd | 5.48 ± 0.10 d | 118.56 ±0.72 c | |
E500 | 6.61 ± 0.05 bc | 2.01 ± 0.13 d | 5.65 ± 0.12 d | 143.47 ± 2.68 b | |
E700 | 7.81 ± 1.02 c | 1.43 ± 0.10 e | 5.42 ± 0.15 d | 139.46 ± 2.05 b | |
E900 | 7.77 ± 0.66 bc | 1.23 ± 0.05 e | 6.02 ± 0.09 a | 151.13 ±1.25 ab |
Parameter | Height | RCD | Total Biomass | Total Root Length | Root Surface Area | Root Biomass | Total N Content | Total P Content | Total K Content |
---|---|---|---|---|---|---|---|---|---|
Height | 1.00 | ||||||||
RCD | 0.410 * | 1.00 | |||||||
Total biomass | 0.801 ** | 0.530 ** | 1.00 | ||||||
Total root length | 0.31 | 0.20 | 0.489 ** | 1.00 | |||||
Root surface area | 0.34 | 0.32 | 0.507 ** | −0.07 | 1.00 | ||||
Root biomass | 0.667 ** | 0.506 ** | 0.919 ** | 0.450 * | 0.449 * | 1.00 | |||
Total N content | 0.659 ** | 0.587 ** | 0.883 ** | 0.537 ** | 0.35 | 0.834 ** | 1.00 | ||
Total P content | 0.614 ** | 0.36 | 0.788 ** | 0.392 * | 0.20 | 0.801 ** | 0.781 ** | 1.00 | |
Total K content | 0.712 ** | 0.472 * | 0.733 ** | 0.32 | 0.424 * | 0.628 ** | 0.472 * | 0.392 * | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, M.; Gao, Z.; Chen, H.; Chen, C.; Yu, F. Exponential Fertilization Regimes Improved Growth and Nutrient Status of Quercus nuttallii Container Seedlings. Agronomy 2022, 12, 669. https://doi.org/10.3390/agronomy12030669
Ni M, Gao Z, Chen H, Chen C, Yu F. Exponential Fertilization Regimes Improved Growth and Nutrient Status of Quercus nuttallii Container Seedlings. Agronomy. 2022; 12(3):669. https://doi.org/10.3390/agronomy12030669
Chicago/Turabian StyleNi, Ming, Zhenzhou Gao, Hong Chen, Chen Chen, and Fangyuan Yu. 2022. "Exponential Fertilization Regimes Improved Growth and Nutrient Status of Quercus nuttallii Container Seedlings" Agronomy 12, no. 3: 669. https://doi.org/10.3390/agronomy12030669
APA StyleNi, M., Gao, Z., Chen, H., Chen, C., & Yu, F. (2022). Exponential Fertilization Regimes Improved Growth and Nutrient Status of Quercus nuttallii Container Seedlings. Agronomy, 12(3), 669. https://doi.org/10.3390/agronomy12030669