Virtual New Nitrogen, Phosphorus, Water Input, and Greenhouse Gas Emission Indicators for the Potatoes Consumed in China
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Study Boundaries
+ 1.3 × f + 2.6 × g + 18.1× h + 19.0 × i) − δSOC/12 × 44
2.2. Data Collection
2.3. Calculations of the VNF, VPF, IWUE, WUE, GHGI, VNNF, VNPF, VIWF, VTWF, and VCF of Potato
2.4. The Normalization Score of the VNNF, VNPF, VIWF or VTWF, and VCF Indicators in the Six Regions
2.5. Uncertainty Analysis
3. Results and Discussion
3.1. The VNF and VNNF of Potatoes in the Six Production Regions
3.2. The VPF and VNPF of Potatoes in the Six Production Regions
3.3. The IWUE, WUE, VIWF, and VTWF of Potatoes in the Six Cultivation Regions
3.4. The GHGI and VCF of Potatoes in the Six Agricultural Regions
3.5. Comparison of the Integrated Production Efficiency of the Six Potato Cultivation Regions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Nesme, T.; Roques, S.; Metson, G.S.; Bennett, E.M. The surprisingly small but increasing role of international agricultural trade on the European Union’s dependence on mineral phosphorus fertilizer. Environ. Res. Lett. 2016, 11, 025003. [Google Scholar] [CrossRef]
- Hu, Y.C.; Su, M.R.; Wang, Y.F.; Cui, S.H.; Meng, F.X.; Yue, W.C.; Liu, Y.F.; Xu, C.; Yang, Z.F. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nature Food 2020, 1, 572–582. [Google Scholar] [CrossRef]
- Zhang, Q.; Wiedmann, T.; Fang, K.; Song, J.; He, J.; Chen, X. Bridging planetary boundaries and spatial heterogeneity in a hybrid approach: A focus on Chinese provinces and industries. Sci. Total Environ. 2022, 804, 150179. [Google Scholar] [CrossRef] [PubMed]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; Leo, F.D.; Massari, S. Virtual water trade of agri-food products: Evidence from Italian-Chinese relations. Sci. Total Environ. 2017, 599, 474–482. [Google Scholar] [CrossRef]
- Verger, Y.; Petit, C.; Barles, S.; Billen, G.; Garnier, J.; Esculier, F.; Maugis, P. A N, P, C, and water flows metabolism study in a peri-urban territory in France: The case-study of the Saclay plateau. Resour. Conserv. Recycl. 2018, 137, 200–213. [Google Scholar] [CrossRef]
- Wu, S.H.; Ben, P.Q.; Chen, D.X.; Chen, J.H.; Tong, G.J.; Yuan, Y.J.; Xu, B.G. Virtual land, water, and carbon flow in the inter-province trade of staple crops in China. Resour. Conserv. Recycl. 2018, 136, 179–186. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Y.F.; Haung, W.; Shi, Y.L.; Bai, X.M.; Cui, S.H. Driving forces and impacts of food system nitrogen flows in China, 1990 to 2012. Sci. Total Environ. 2018, 610–611, 430–441. [Google Scholar] [CrossRef]
- Bleken, M.A.; Bakken, L.R. The nitrogen cost of food production: Norwegian society. Ambio 1997, 26, 134–142. [Google Scholar]
- Cui, S.H.; Shi, Y.L.; Malik, A.; Lenzen, M.; Gao, B.; Huang, W. A hybrid method for quantifying China’s nitrogen footprint during urbanization from 1990 to 2009. Environ. Int. 2016, 97, 137–145. [Google Scholar] [CrossRef]
- Guo, M.C.; Chen, X.H.; Bai, Z.H.; Jiang, R.F.; Galloway, J.N.; Leach, A.M.; Cattaneo, L.R.; Oenema, O.; Ma, L.; Zhang, F.S. How China’s nitrogen footprint of food has changed from 1961 to 2010. Environ. Res. Lett. 2017, 12, 104006. [Google Scholar] [CrossRef]
- Munesue, Y.; Mausi, T. The impacts of Japanese food losses and food waste on global natural resources and greenhouse gas emissions. J. Ind. Ecol. 2019, 23, 1196–1210. [Google Scholar] [CrossRef]
- Johnson, L.K.; Dunning, R.D.; Bloom, J.D.; Gunter, C.C.; Boyette, M.D.; Creamer, N.G. Estimating on farm food loss at the field level: A methodology and applied case study on a North Carolina farm. Resour. Conserv. Recycl. 2018, 137, 243–250. [Google Scholar] [CrossRef]
- Spang, E.S.; Moreno, L.C.; Pace, S.A.; Achmon, Y.; Donis-Gonzalez, I.; Gosliner, W.A.; Jablonski-Sheffeld, M.P.; Momin, M.D.; Quested, T.E.; Winans, K.S.; et al. Food loss and waste: Measurement, drivers, and solutions. Annu. Rev. Environ. Res. 2019, 44, 117–156. [Google Scholar] [CrossRef]
- Wang, L.; Gao, B.; Hu, Y.C.; Huang, W.; Cui, S.H. Environmental effects of sustainability-oriented diet transition in China. Resour. Conserv. Recycl. 2020, 158, 104802. [Google Scholar] [CrossRef]
- Tayel, M.; El-dardiry, E.; El-Hady, M.A. Water and fertilizer use efficiency as affected by irrigation methods. Am-Eurasian J. Agric. Environ. Sci. 2006, 1, 294–301. [Google Scholar]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Lanigan, G.; Kutsch, W.L.; Buchmann, N.; Eugster, W.; Aubinet, M.; Ceschia, E.; Beziat, P.; Yeluripati, J.B.; Osborne, B.; et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric. Ecosyst. Environ. 2010, 139, 302–315. [Google Scholar] [CrossRef]
- Huang, T.; Hu, X.K.; Gao, B.; Yang, H.; Huang, C.Y.; Ju, X.T. Improved nitrogen management as a key mitigation to net global warming potential and greenhouse gas intensity in North China Plain. Soil Sci. Soc. Am. J. 2017, 82, 136–146. [Google Scholar] [CrossRef]
- Gao, B.; Huang, T.; Ju, X.T.; Gu, B.J.; Huang, W.; Xu, L.L.; Rees, R.B.; Powlson, D.S.; Smith, P.; Cui, S.H. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Chang. Biol. 2018, 24, 5590–5606. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Heuvelink, G.B.M.; Bai, Z.G.; He, P.; Xu, X.P.; Ma, J.C.; Masiliūnas, D. Space-time statistical analysis and modeling of nitrogen use efficiency indicators at provincial scale in China. Eur. J. Agron. 2020, 115, 126032. [Google Scholar] [CrossRef]
- Plank, B.; Eisenmenger, N.; Schaffartzik, A.; Wiedenhofer, D. International trade drives global resource use: A structural decomposition analysis of raw material consumption from 1990−2010. Environ. Sci. Technol. 2018, 52, 4190–4198. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Huang, W.; Wang, L.; Huang, Y.F.; Ding, S.P.; Cui, S.H. Driving forces of nitrogen flows and nitrogen use efficiency of food systems in seven Chinese cities, 1990 to 2015. Sci. Total Environ. 2019, 676, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Gao, B.; Huang, W.; Wang, L.; Fang, X.J.; Xu, S.; Cui, S.H. Producing more potatoes with lower inputs and greenhouse gases emissions by regionalized cooperation in China. J. Clean. Prod. 2021, 299, 126883. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations), 2018. FAOSTAT: FAO Statistical Databases. FAO. Available online: http://www.fao.org/faostat/zh/#data/QC (accessed on 18 September 2022).
- Xu, Y.X.; He, P.; Qiu, S.J.; Xu, X.P.; Ma, J.C.; Ding, W.W.; Zhao, S.C.; Gao, Q.; Zhou, W. Regional variation of yield and fertilizer use efficiency of potato in China. J. Plant Nut. Fert. 2019, 25, 22–35, (In Chinese with English Abstract). [Google Scholar]
- Gao, B.; Huang, W.; Xue, X.B.; Hu, Y.C.; Huang, Y.F.; Wang, L.; Ding, S.P.; Cui, S.H. Comprehensive environmental assessment of potato as staple food policy in China. Int. J. Environ. Res. Public Health 2019, 16, 2700. [Google Scholar] [CrossRef] [Green Version]
- MOA (Ministry of Agriculture of the People’s Republic of China). The Guidance for Accelerate the Development of the Potato Industrialization; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2016. [Google Scholar]
- Xu, H.Q.; Guo, T.Z.; Lu, S.J.; Ma, Y.Q.; Wang, X.L.; Zhao, L.Y.; Sun, J.M. Effect of steamed potato bread intake on glucose, lipids, and urinary Na+ and K+: A randomized controlled trial with adolescents. Int. J. Environ. Res. Public Health 2020, 17, 2096. [Google Scholar] [CrossRef] [Green Version]
- RESD-NBSC (Rural Economic Survey Division, National Bureau of Statistics of China). China Rural Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2020. [Google Scholar]
- MOA (Ministry of Agriculture of the People’s Republic of China). China Agriculture Yearbook; China Agriculture Press: Beijing, China, 2018. [Google Scholar]
- Ma, L.; Velthof, G.L.; Qin, W.; Zhang, W.F.; Liu, Z.; Zhang, Y.; Wei, J.; Lesschen, J.P.; Ma, W.Q.; Oenema, O.; et al. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci. Total Environ. 2012, 434, 51–61. [Google Scholar] [CrossRef]
- Wang, F.X.; Feng, S.Y.; Hou, X.Y.; Kang, S.Z.; Han, J.J. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Res. 2009, 110, 123–129. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Leip, A.; Jones, A.; Lugato, E. Integrated management for sustainable cropping systems: Looking beyond the greenhouse balance at the field scale. Glob. Chang. Biol. 2020, 26, 2584–2598. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, M.; et al. Climate Change and Land. In An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes In Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 1–41. [Google Scholar]
- Ma, L.; Ma, W.Q.; Velthof, G.L.; Wang, F.H.; Qin, W.; Zhang, F.S.; Oenema, O. Modeling nutrient flows in the food chain of China. J. Environ. Qual. 2010, 39, 1279–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F. Agroecology; China Agricultural University Press: Beijing, China, 2002; p. 261. (In Chinese) [Google Scholar]
- Wang, M.X.; Zhao, H.H.; Cui, J.X.; Fan, D.; Lv, B.; Wang, G.; Li, Z.H.; Zhou, G.J. Evaluating green development level of nine cities within the Pearl River Delta, China. J. Clean. Prod. 2018, 174, 315–323. [Google Scholar] [CrossRef]
- Fessler, J.A.; Sutton, B.P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef]
- IPCC. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2000. [Google Scholar]
- NBSC (National Bureau of Statistics of China). China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2019. [Google Scholar]
- Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level; International Fertilizer Industry Association: Paris, France, 2013. [Google Scholar]
- Gathungu, G.K.; Aguyoh, J.N.; Isutsa, D.K. Effects of integration of irrigation water and mineral nutrient management in seed potato (Solanum tuberosum L.) production on water, nitrogen and phosphorus use efficiencies. In Adapting African Agriculture to Climate Change; Climate Change Management; Leal Filho, W., Esilaba, A., Rao, K., Sridhar, G., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Satchithanantham, S. Water Management Effects on Potato Production and the Environment. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2015. [Google Scholar]
- Zhang, Y.; Liu, Y.P.; Shibata, H.; Gu, B.J.; Wang, Y.W. Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China’s main food crops. Environ. Res. Lett. 2018, 13, 014017. [Google Scholar] [CrossRef]
- Gao, L.W. Analysis and Evaluation of Nitrogen Flow in the Food System: A Case Study of Huang-Huai-Hai Plain. Master’s Thesis, Agricultural University of Hebei, Baoding, China, 2009. [Google Scholar]
- Liu, T.; Yang, X.G.; Gao, J.Q.; He, B.; Bai, F.; Zhang, F.L.; Liu, Z.J.; Wang, X.Y.; Sun, S.; Wan, N.H.; et al. Production capacity and its WUE of different crops in Lishu county of Jilin Province. Trans. CSAE 2019, 35, 97–104, (In Chinese with English Abstract). [Google Scholar]
- Pishgar-Komleh, S.H.; Ghahderijani, M.; Sefeedpari, P. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. J. Clean. Prod. 2012, 33, 183–191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Zhong, D.; Fang, X.; Huang, W.; Xu, S.; Cui, S. Virtual New Nitrogen, Phosphorus, Water Input, and Greenhouse Gas Emission Indicators for the Potatoes Consumed in China. Agronomy 2022, 12, 3169. https://doi.org/10.3390/agronomy12123169
Gao B, Zhong D, Fang X, Huang W, Xu S, Cui S. Virtual New Nitrogen, Phosphorus, Water Input, and Greenhouse Gas Emission Indicators for the Potatoes Consumed in China. Agronomy. 2022; 12(12):3169. https://doi.org/10.3390/agronomy12123169
Chicago/Turabian StyleGao, Bing, Dongliang Zhong, Xuejuan Fang, Wei Huang, Su Xu, and Shenghui Cui. 2022. "Virtual New Nitrogen, Phosphorus, Water Input, and Greenhouse Gas Emission Indicators for the Potatoes Consumed in China" Agronomy 12, no. 12: 3169. https://doi.org/10.3390/agronomy12123169
APA StyleGao, B., Zhong, D., Fang, X., Huang, W., Xu, S., & Cui, S. (2022). Virtual New Nitrogen, Phosphorus, Water Input, and Greenhouse Gas Emission Indicators for the Potatoes Consumed in China. Agronomy, 12(12), 3169. https://doi.org/10.3390/agronomy12123169