The Effects of Climate Change on Heading Type Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) Economic Production in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chinese Cabbage Morphological Data Collection
2.2. K-Means Clustering with the Elbow Method for Chinese Cabbage Segmentation
2.3. Determination of GDD for Each Chinese Cabbage Group
2.4. Development of Chinese Cabbage Yield Prediction Model Using GDD and Other Weather Variables
2.5. Determination of the Appropriate Chinese Cabbage group under Various Climate Change Conditions
2.6. Analysis of Impacts of Cropping Management and Various Weather Conditions on Economic Production
3. Results
3.1. Cluster Analysis Based on Morphological Characteristics and GDD Evaluated on Nineteen Chinese Cabbage Varieties
3.2. Chinese Cabbage Yield Model Development and Prediction of Yields in Future Climate Climates
3.3. Chinese Cabbage Yields in Future Climate Climates
3.4. Analysis of Impacts of Variable Weather Conditions on Chinese Cabbage Economic Production
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- KREI (Korea Rural Economic Institute). Agricultural Demand 2017, I—Supply and Demand of the Leafy and Root Vegetables; Kim, S.W., Rho, H.Y., Lim, H.B., Choi, S.W., Han, E.S., Lee, D.K., Chae, J.H., Kim, S.Y., Eds.; Korea Rural Economic Institute Research Report; Korea Rural Economic Institute: Naju-si, Korea, 2017; pp. 557–629. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Crops and Livestock Products: Production Quantities of Cabbage and Other Brassicas by Country. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 18 July 2022).
- Oh, S.; Moon, K.H.; Son, I.C.; Song, E.Y.; Moon, Y.E.; Koh, S.C. Growth, photosynthesis and chlorophyll fluorescence of chinese cabbage in response to high temperature. Kor. J. Hortic. Sci. Technol. 2014, 32, 318–329. [Google Scholar]
- Lee, H.J.; Kim, J.S.; Lee, S.G.; Kim, S.K.; Min, B.; Choi, C.S. Glutamic acid foliar application enhances antioxidant enzyme activities in kimchi cabbages leaves treated with low air temperature. Hortic. Sci. Technol. 2017, 35, 700–706. [Google Scholar]
- Fan, H.; Du, C.; Xu, Y.; Wu, X. Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hort. Environ. Biotechnol. 2014, 55, 159–165. [Google Scholar] [CrossRef]
- Im, E.S.; Thanh, N.X.; Kim, Y.H.; Ahn, J.B. 2018 summer extreme temperatures in South Korea and their intensification under 3C global warming. Environ. Res. Lett. 2019, 14, 094020. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S. Trends of extreme cold events in the central regions of Korea and their influence on the heating energy demand. Weather Clim. Extrem. 2019, 24, 100199. [Google Scholar] [CrossRef]
- Sherrick, B. Relative Importance of Price vs. Yield Variability in Crop Revenue Risk; Farmdoc Daily (2):198; Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2012. [Google Scholar]
- Statistics Korea. 2021 Napa Cabbage Production Yield Data. 2022. Available online: http://kostat.go.kr/portal/korea/kor_nw/1/8/8/index.board?bmode=read&bSeq=&aSeq=415783&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt= (accessed on 18 July 2022).
- Shin, J.Y.; Kang, M.; Kim, K.R. Outdoor thermal stress changes in South Korea: Increasing inter-annual variability induced by different trends of heat and cold stresses. Sci. Total Environ. 2022, 805, 150132. [Google Scholar] [CrossRef]
- Park, S.H.; Cho, H.R.; Lee, S.B.; Kim, G.K.; Lee, J.S. Practical Cultivation Guidelines for Kimchi Cabbage, Rural Development Administration. 2019. Available online: https://www.nongsaro.go.kr/portal/ (accessed on 23 August 2022).
- Park, H.J.; Jung, W.Y.; Lee, S.S.; Song, J.H.; Kwon, S.Y.; Kim, H.; Kim, C.; Ahn, J.C.; Cho, H.S. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.). Int. J. Mol. Sci. 2013, 14, 11871–11894. [Google Scholar] [CrossRef] [Green Version]
- Dethier, B.E.; Vittum, M.T. Growing Degree Days; New York State Agricultural Experiment Sataion: Geneva, NY, USA, 1963; p. 1. [Google Scholar]
- Zhou, G.; Wang, Q. A new nonlinear method for calculating growing degree days. Sci. Rep. 2018, 8, 10149. [Google Scholar] [CrossRef] [Green Version]
- Smith, G. Cabbage Market Trends: Grain Reports; USDA-Foreign Agricultural Service Report. Report No.: KS1027; USDA Foreign Agricultural Service: Washington, DC, USA, 2010. [Google Scholar]
- Kizito, A.M.; Staatz, J. A partial equilibrium approach to estimating the potential payoffs of providing improved agricultural market information in the form of price forecasts. Cah. Agric. 2014, 23, 325–335. [Google Scholar] [CrossRef]
- Statistics Korea. KOSIS. 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&vw (accessed on 18 July 2022).
- ATKAMIS. The Price Sold to Small Merchants and End-Users in the Wholesale Market, Korea Agro-Fisheries & Food Trade Corporation. 2022. Available online: https://www.kamis.or.kr/customer/price/wholesale/period.do (accessed on 23 August 2022).
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Meng, C.; Son, Y.J. Simulation-based machine shop operations scheduling system for energy cost reduction. Simul. Model. Pract. Theory 2017, 77, 68–83. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Kim, S.; Cho, J.; Kim, S. Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy 2021, 11, 1590. [Google Scholar] [CrossRef]
- Cui, M. Introduction to the k-means clustering algorithm based on the elbow method, Accounting. Audit. Financ. 2020, 1, 5–8. [Google Scholar]
- Kara, N.Y. Quality, and growing degree days of anise (Pimpinella anisum L.) under different agronomic practices. Turk. J. Agric. For. 2015, 39, 1014–1022. [Google Scholar] [CrossRef]
- Kumar, B.P. Impact of climate change on seed production of cabbage in North Western Himalayas. World J. Agric. Sci. 2009, 5, 18–26. [Google Scholar]
- Muleke, E.M.; Sidi, M.; Itulya, F.M.; Martin, T.; Ngouajio, M. Enhancing cabbage (Brassica oleraceae Var capitate) yields and quality through Microclimate Modification and phylogical improvement using agronet covers. Sustain. Agric. Res. 2014, 3, 24–34. [Google Scholar]
- Senthilnathan, S. Usefulness of Correlation Analysis. SSRN 3416918. 2019. Available online: https://ssrn.com/abstract=3416918 (accessed on 18 July 2022).
- Kim, S.; Kim, S.; Yoon, C.Y. An efficient structure of an agrophotovoltaic system in a temperate climate region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Yoon, C.Y.; Kim, S.; An, K.N.; Kim, S. Simulated impacts of rainfall extremes on yield responses of various barley varieties in a temperate region. Int. Agrophys. 2021, 35, 119–129. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Green, C.H.M.; Jeong, J. Multivariate Polynomial Regression Modeling of Total Dissolved-Solids in Rangeland Stormwater Runoff in the Colorado River Basin. Environ. Model. Softw. 2022, 157, 105523. [Google Scholar] [CrossRef]
- Giustolisi, O.; Savic, D.A. A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinform. 2006, 8, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Version 20190627. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. D Atmos 2022, 107, ACL-6. [Google Scholar] [CrossRef]
- Sarafopoulos, G. Complexity in a duopoly game with homogeneous players, convex, log-linear demand and quadratic cost functions. Procedia Econ. Financ. 2015, 33, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Pyles, C.; Jha, R. Data 88E: Economic Models Texbook, UC Berkeley. 2020. Available online: https://data-88e.github.io/textbook/content/01-demand/03-log-log.html (accessed on 18 July 2022).
- Sims, C.A. Macroeconomics and Reality; Econometric Society: Cambridge, UK, 1980; pp. 1–48. [Google Scholar]
- Li, P.; Tian, Y.; Wu, J.; Xu, W. The Great Western Development policy: How it affected grain crop production, land use and rural poverty in western, China. China Agric. Econ. Rev. 2021, 13, 319–348. [Google Scholar] [CrossRef]
- Han, E.; Choi, S.; Kim, D.; Lim, H.; Park, S. Supply Trend and Forecast of Leaf and Root Vegetables; Korea Rural Economic Institute: Seoul, Korea, 2020; pp. 609–666. [Google Scholar]
- Patra, J.K.; Das, G.; Paramithiotis, S.; Shin, H.S. Kimchi and other widely consumed traditional fermented foods of Korea: A review. Front. Microbiol. 2016, 7, 1493. [Google Scholar] [CrossRef]
- Ha, D.; Lee, S.; Cho, Y. A Study on Price Sensitivity and Purchasing Attribute of Chinese Cabbage. J. Agric. Ext. Community Dev. 2014, 21, 81–99. [Google Scholar]
- KOSIS (Korean Statistical Information Service). Vegetable Production in South Korea. 2022. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0028&vw (accessed on 23 August 2022).
- NGII (National Geographic Information Institute). The National Atlas of Korea-Comprehensive Edition, National Geographic Information Institute and Ministry of Land. Infrastructure and Transport; National Geographic Information Institute: Suwon-si, Korea, 2017. [Google Scholar]
- Kalisz, A.; Siwek, P. Yield and quality of spring Chinese cabbage as affected by different temperature condition during seedling production. Folia Hortic. 2006, 18, 3–15. [Google Scholar]
- Wi, S.H.; Lee, H.J.; An, S.; Kim, S.K. Evaluating growth and photosynthesis of kimchi cabbage according to extreme weather conditions. Agronomy 2020, 10, 1846. [Google Scholar] [CrossRef]
- Tanyi, C.B.; Ngosong, C.; Ntonifor, N.N. Effects of climate variability on insect pests of cabbage: Adapting alternative planting dates and cropping pattern as control measures. Chem. Biol. Technol. Agric. 2018, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Vestco, P.; Kovacic, M.; Mistry, M. Climate variability, crop and conflict: Exploring the impacts of spatial concentration in agriculture production. J. Peace Res. 2021, 58, 98–113. [Google Scholar] [CrossRef]
- Sim, H.S.; Jo, W.J.; Lee, H.J.; Moon, Y.H.; Woo, U.J.; Jung, S.B.; Ahn, S.R.; Kim, S.K. Determination of optimal growing degree days and cultivars of Kimchi cabbage for growth and yield and during spring cultivation under shading conditions. Hortic. Sci. Technol. 2021, 39, 714–725. [Google Scholar]
- Farmers News. Major Chinese Cabbage Varieties from Various Seed Korea Companies. 2011. Available online: https://www.nongmin.com/news/NEWS/ECO/FRM/12914/view?site_preference=normal (accessed on 20 August 2022).
- Jung, J.M.; Byeon, D.H.; Jung, S.; Lee, W.H. Effect of climate change on the potential distribution of the common cutworm (Spodoptera litura) in South Korea. Entomol. Res. 2019, 49, 519–528. [Google Scholar] [CrossRef]
Morphological Trait | Method |
---|---|
Head weight (g) | Measure the fresh weight of cabbage head per plant |
Number of inner leaves (no.) | Count the number of inner leaves that are longer than 1 cm counted per plant |
Number of outer leaves (no.) | Count the number of outer leaves that are longer than 1 cm counted per plant |
Plant height (cm) | Measure from the basal part of the leaf sheath to the tip of the longest leaf |
Leaf blade width (cm) | Measure the widest part of the largest leaf |
Root length (cm) | Measure the length of the longest root |
Root diameter (cm) | Measure at the widest part of the root |
Mean Temperature (°C) | Total Precipitation (mm) | |||||
---|---|---|---|---|---|---|
Province | Sep. | Oct. | Nov. | Sep. | Oct. | Nov. |
Gangwon | 17.26 | 10.73 | 4.87 | 245 | 31 | 34 |
Chungcheonbuk | 20.48 | 12.49 | 7.05 | 172 | 18 | 39 |
Chungcheonnam | 20.73 | 13.68 | 7.51 | 220 | 34 | 77 |
Gyeongsangbuk | 19.79 | 14.17 | 8.76 | 171 | 47 | 34 |
Jeollabuk | 21.40 | 14.81 | 9.60 | 185 | 28 | 69 |
Jeollanam | 21.88 | 15.67 | 9.99 | 170 | 24 | 38 |
Average | 20.25 | 13.46 | 7.69 | 191 | 31 | 49 |
Group | Varieties | |
---|---|---|
1 | Chusuk Norang, Whang-geum, Bulam+3ho, Salmi, Hiyeta, Nongawang, MatnaBaechu, WaldongJangGuen | (4.83) |
2 | Norangbaechu, Bulam, Bulam3ho, ChungMyungGaeul, Chugwang, Wheeparam, ChungNam, ChunGwang | (3.77) |
3 | ChungoMabi, ChungGoBawi, Bulam+, Haoreum, TongKeunBaeChu, TongkeunChuSuk, ChunGomabi, Sulmi | (3.02) |
Group | Height (cm) | Inner Leaves (no.) | Outer Leaves (no.) | Leaf Blade Width (cm) | Root Length (cm) | Root Diameter (cm) | Head Weight/Plant (g) | GDDs |
---|---|---|---|---|---|---|---|---|
Group 1 | 44.29 | 76 | 11 | 31.09 | 30.50 | 21.15 | 4302 | 795 |
Group 2 | 39.01 | 71 | 9 | 27.45 | 27.17 | 20.38 | 3408 | 873 |
Group 3 | 39.19 | 61 | 6 | 26.21 | 27.66 | 18.98 | 2516 | 814 |
Month | Mean Air Temperature (°C) | ||||||||
Historical (2020–2021) | SSP245 (2030–2050) | SSP585 (2030–2050) | |||||||
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
September | 26.2 | 13.4 | 20.25 | 27.97 | 21 | 23.51 | 28.23 | 20.43 | 23.54 |
October | 21.51 | 5.51 | 13.46 | 20.47 | 13.05 | 16.34 | 21.81 | 12.74 | 17.09 |
November | 15.53 | −0.54 | 7.69 | 15.22 | 5.25 | 9.79 | 15.52 | 4.93 | 10 |
Weather variables | Other weather variables (September–November) | ||||||||
Historical (2020–2021) | SSP245 (2030–2050) | SSP585 (2030–2050) | |||||||
Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | |
Total prep. (mm) | 331 | 229 | 271 | 905 | 83 | 318 | 1066 | 86 | 341 |
Avg. Hum (%) | 79 | 72 | 76 | 80 | 59 | 72 | 81 | 59 | 72 |
Total Cabbage Production (×1000 ton) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
History (2020–2021) | Total of 7 provinces | Harvested area (2017–2021, ha) | Group 1 | Group 2 | Group 3 | ||||||
24,943 | 3219 | 2550 | 1883 | ||||||||
Growing Period (in days) | 60 | 70 | 80 | ||||||||
SSP | Province | Harvested area (2017–2021, ha) | Group 1 | Group 2 | Group 3 | Group 1 | Group 2 | Group 3 | Group 1 | Group 2 | Group 3 |
SSP245 | Gyeonggi | 1994 | 308 | 228 | 179 | 294 | 146 | 172 | 317 | 142 | 159 |
Gangwon | 5712 | 892 | 806 | 502 | 1142 | 787 | 429 | 1011 | 713 | 379 | |
Chung-cheonbuk | 2551 | 395 | 282 | 211 | 388 | 199 | 199 | 388 | 176 | 195 | |
Chung-cheonnam | 1663 | 323 | 202 | 126 | 275 | 129 | 122 | 290 | 98 | 126 | |
Gyeong-sangbuk | 3494 | 494 | 222 | 234 | 392 | 447 | 181 | 574 | 610 | 161 | |
Jeollabuk | 1946 | 348 | 130 | 142 | 249 | 93 | 134 | 248 | 136 | 119 | |
Jeollanam | 7582 | 1006 | 430 | 495 | 702 | 500 | 443 | 796 | 856 | 429 | |
Total | 24,943 | 3766 | 2299 | 1889 | 3442 | 2302 | 1679 | 3624 | 2732 | 1567 | |
SSP585 | Gyeonggi | 1994 | 315 | 174 | 172 | 284 | 128 | 169 | 247 | 117 | 170 |
Gangwon | 5712 | 968 | 704 | 474 | 951 | 584 | 405 | 900 | 532 | 463 | |
Chung-cheonbuk | 2551 | 489 | 246 | 188 | 422 | 184 | 183 | 376 | 160 | 186 | |
Chung-cheonnam | 1663 | 331 | 190 | 108 | 330 | 114 | 114 | 319 | 94 | 120 | |
Gyeong-sangbuk | 3494 | 491 | 260 | 278 | 511 | 492 | 262 | 591 | 646 | 256 | |
Jeollabuk | 1946 | 265 | 113 | 146 | 244 | 95 | 140 | 212 | 110 | 141 | |
Jeollanam | 7582 | 955 | 451 | 544 | 849 | 594 | 514 | 793 | 841 | 515 | |
Total | 24,943 | 3815 | 2138 | 1910 | 3592 | 2191 | 1787 | 3439 | 2499 | 1850 |
Group 1 | Group 2 | Group 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Historical (2020–2021) | 0.12 | 0.44 | 1.55 | ||||||
Growing days | 60 | 70 | 80 | 60 | 70 | 80 | 60 | 70 | 80 |
SSP245 | 0.04 | 0.08 | 0.06 | 0.71 | 0.70 | 0.31 | 1.53 | 2.27 | 2.81 |
SSP585 | 0.04 | 0.06 | 0.08 | 0.96 | 0.87 | 0.49 | 1.47 | 1.86 | 1.65 |
Total Revenue (Million Dollar) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
History (2020–2021) | Total of 7 provinces | Group 1 | Group 2 | Group 3 | ||||||
402.14 | 1123.75 | 2916.17 | ||||||||
Growing Period (in days) | 60 | 70 | 80 | |||||||
SSP | Province | Group 1 | Group 2 | Group 3 | Group 1 | Group 2 | Group 3 | Group 1 | Group 2 | Group 3 |
SSP245 | Gyeonggi | 13.73 | 161.24 | 274.10 | 24.13 | 102.67 | 391.23 | 18.46 | 44.41 | 446.64 |
Gangwon | 39.76 | 569.99 | 768.70 | 93.72 | 553.42 | 975.80 | 58.88 | 222.99 | 1064.62 | |
Chung-cheonbuk | 17.60 | 199.43 | 323.10 | 31.84 | 139.94 | 452.64 | 22.60 | 55.04 | 547.76 | |
Chung-cheonnam | 14.40 | 142.85 | 192.94 | 22.57 | 90.71 | 277.50 | 16.89 | 30.65 | 353.94 | |
Gyeong-sangbuk | 22.02 | 157.00 | 358.32 | 32.17 | 314.33 | 411.70 | 33.43 | 190.78 | 452.25 | |
Jeollabuk | 15.51 | 91.93 | 217.44 | 20.43 | 65.40 | 304.80 | 14.44 | 42.53 | 334.28 | |
Jeollanam | 44.84 | 304.09 | 757.98 | 57.61 | 351.60 | 1007.64 | 46.36 | 267.71 | 1205.08 | |
Total | 167.85 | 1625.82 | 2892.57 | 282.48 | 1618.76 | 3819.04 | 211.07 | 854.42 | 4401.76 | |
SSP585 | Gyeonggi | 12.80 | 166.66 | 253.16 | 17.57 | 110.95 | 313.62 | 20.39 | 56.76 | 280.17 |
Gangwon | 39.34 | 674.31 | 697.66 | 58.83 | 506.20 | 751.58 | 74.28 | 258.09 | 763.04 | |
Chung-cheonbuk | 19.87 | 235.62 | 276.71 | 26.11 | 159.49 | 339.60 | 31.03 | 77.62 | 306.54 | |
Chung-cheonnam | 13.45 | 181.99 | 158.96 | 20.41 | 98.81 | 211.56 | 26.33 | 45.60 | 197.76 | |
Gyeong-sangbuk | 19.95 | 249.03 | 409.18 | 31.61 | 426.46 | 486.21 | 48.78 | 313.40 | 421.90 | |
Jeollabuk | 10.77 | 108.23 | 214.89 | 15.09 | 82.34 | 259.81 | 17.50 | 53.37 | 232.37 | |
Jeollanam | 38.81 | 431.98 | 800.69 | 52.52 | 514.87 | 953.86 | 65.45 | 408.00 | 848.74 | |
Total | 155.03 | 2047.83 | 2811.26 | 222.21 | 1899.14 | 3316.25 | 283.83 | 1212.36 | 3048.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Rho, H.Y.; Kim, S. The Effects of Climate Change on Heading Type Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) Economic Production in South Korea. Agronomy 2022, 12, 3172. https://doi.org/10.3390/agronomy12123172
Kim S, Rho HY, Kim S. The Effects of Climate Change on Heading Type Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) Economic Production in South Korea. Agronomy. 2022; 12(12):3172. https://doi.org/10.3390/agronomy12123172
Chicago/Turabian StyleKim, Sumin, Ho Young Rho, and Sojung Kim. 2022. "The Effects of Climate Change on Heading Type Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) Economic Production in South Korea" Agronomy 12, no. 12: 3172. https://doi.org/10.3390/agronomy12123172
APA StyleKim, S., Rho, H. Y., & Kim, S. (2022). The Effects of Climate Change on Heading Type Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) Economic Production in South Korea. Agronomy, 12(12), 3172. https://doi.org/10.3390/agronomy12123172