Effects of Different Regulating Measures on the Floral and Nutritional Physiology of Lemon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experiment Design and Methods
2.3. Measurement Indexes and Methods
2.3.1. Investigation of Plant Growth Index
2.3.2. Fruit Load and Fruit Quality of Lemons Regulated by Different Hormones
2.3.3. Dynamic Changes C/N Ratio in Leaves
2.4. Data Processing and Analysis
3. Results
3.1. Effects of Hormone Treatment on Lemons
3.2. Types of Lemon Branches Regulated by Different Hormones
3.3. Fruit Load, Fruit Morphology, and Fruit Quality of Lemons Regulated by Different Hormones
3.4. Contents of Soluble Sugar, Starch, and C/N Ratio Regulated by Different Hormones
4. Discussion
4.1. Lemon Growth and Development under the Regulation of Different Hormones
4.2. Effects of Hormone Regulation on the Nutritional Physiology of Lemon Leaves
4.3. Effects of Hormone Regulation on the Nutritional Physiology of Lemon Leaves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.Y.; Zhou, D.G.; Yue, J.Q.; Peng, M.X.; Sun, Y.F.; Li, J.X.; Zhang, P. Initial research on the dynamic regular of physiological deflowering and fruit drop of planting lemon in Dehong state. Southwest China J. Agric. Sci. 2008, 2, 328–331. [Google Scholar]
- Li, J.X.; Peng, M.X.; Zhou, D.G.; Duo, J.Z.; Zhao, J.; Yue, J.Q. Effects of different regulating technologies on fruit of autumn flowering lemon. J. Hunan Agric. Univ. (Nat. Sci.) 2012, 38, 271–275. [Google Scholar]
- Siqueira, D.L.D.; Cecon, P.R.; Carlos, L. Chamhum Salomão. Desenvolvimento do limoeiro ‘Volkameriano’ (Citrus volkameriana Pasq.) submetido a doses de paclobutrazol e ácido giberélico. Rev. Bras. De Frutic. 2008, 30, 764–768. [Google Scholar] [CrossRef] [Green Version]
- Valero, D.; Martinez-romero, D.; Serrano, M.; Riquelme, F. Postharvest gibberellin and heat treatment effects on polyamines, abscisic acid and firmness in lemons. J. Food Sci. 1998, 64, 5. [Google Scholar] [CrossRef]
- Martínez-Fuentes, C.; Mesejo, N.; Muñoz-Fambuena, C.; Reig, M.C.; González-Mas, D.J.; Iglesias, E.; Primo-Millo, M.A. Fruit load restricts the flowering promotion effect of paclobutrazol in alternate bearing Citrus spp. Sci. Hortic. 2013, 151, 122–127. [Google Scholar] [CrossRef]
- Jr, J.H.; Lewis, L.N. Response of one-year-old cherry and mature bearing cherry, peach and apple trees to gibberellin. Proc. Am. Soc. Hortic. Sci. 1959, 74, 93–100. [Google Scholar]
- Bradley, M.V.; Crane, J.C. Gibberellin-Induced Inhibition of Bud Development in Some Species of Prunus. Science 1960, 131, 825–826. [Google Scholar] [CrossRef]
- Griggs, W.H.; Iwakiri, B.T. Effects of gibberellin and 2,4,trichlorophenoxypropionic acid sprays on ‘Bartlett’ pear trees. Proc. Am. Soc. Hortic. Sci. 1961, 77, 73–89. [Google Scholar]
- Marcelle, R.; Sironval, C. Effect of Gibberellic Acid on Flowering of Apple Trees. Nature 1963, 197, 405. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, N.; Rattanpal, H.S. Quality and quantity improvement of citrus: Role of plant growth regulators. Int. J. Agric. 2015, 8, 433–447. [Google Scholar] [CrossRef]
- Manuel, T.; Marco, C.; Fred, G.J. The Genus Citrus, 1st ed.; Elsevier Inc.: London, UK, 2020. [Google Scholar]
- Koshita, Y.; Takahara, T.; Ogata, T.; Goto, A. Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.). Sci. Hortic. 1999, 79, 185–194. [Google Scholar] [CrossRef]
- Ashraf, M.; Karim, F.; Rasul, E. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 2002, 36, 49–59. [Google Scholar] [CrossRef]
- Goldberg-Moeller, R.; Shalom, L.; Shlizerman, L.; Samuels, S.; Zur, N.; Ophir, R.; Blumwald, E.; Sadka, A. Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Sci. Int. J. Exp. Plant Biol. 2013, 198, 46–57. [Google Scholar] [CrossRef]
- Blanchard, M.G.; Runkle, E.S. Dipping bedding plant liners in paclobutrazol or uniconazole inhibits subsequent stem extension. Horttechnology 2007, 17, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Kasraoui, M.F.; Duquesnoy, I.; Winterton, P.; Lamaze, T. Soluble and cell wall bound peroxidase activities are markers of flower bud development stages in lemon. J. Appl. Bot. Food Qual. 2014, 87, 1–8. [Google Scholar]
- Okuda, H.; Kihara, T.; Iwagaki, I. Effects of paclobutrazol application to soil at the beginning of maturation on sprouting, shoot growth, flowering and carbohydrate contents in roots and leaves of satsuma mandarin. J. Hortic. Sci. 1996, 71, 785–789. [Google Scholar] [CrossRef]
- Reddy, Y.T.N.; Prasad, S.R.S.; Bindu, G. Hormonal changes in response to paclobutrazol induced early flowering in mango cv. Totapuri. Sci. Hortic. 2012, 150, 414–418. [Google Scholar]
- Bazurto, F.P.; Celi, A.; Corozo, L.; Solís, L. Importance of paclobutrazol in out-of-season citrus production. Manglar 2022, 19, 117–127. [Google Scholar] [CrossRef]
- Chen, X.; Tao, Z.L.; Wu, Z.X.; Wang, L.X.; Fu, H.Z.; Zhou, Z.D.; Fan, W.B. Effect of paclobutrazol plus ethephon treatment on endogenous hormones and carbon and nitrogen nutrients in litchi variety ‘Feizixiao’. Agric. Sci. Technol. 2013, 14, 1125–1131. [Google Scholar]
- Liu, T.; Hu, Y.Q.; Li, X.X. Comparison of dynamic changes in endogenous hormones and sugars between abnormal and normal Castanea mollissima. Prog. Nat. Sci. 2008, 18, 685–690. [Google Scholar] [CrossRef]
- Cruz, M.; Siqueira, D.; Salomão, L.; Cecon, P. Influence of paclobutrazol and of the environment temperature on flowering and fruitification of acid lime Tahiti. Ciência E Agrotecnologia 2008, 32, 1148–1153. [Google Scholar] [CrossRef]
- Liu, H.M.; Li, J.; Zhu, C.H.; Peng, M.X.; Li, J.X.; Du, X.Y.; Gao, J.Y.; Yue, J.Q. Effects of paclobutrazol on vegetative and reproductive growth of lemon. J. South. Agric. 2013, 44, 1694–1699. [Google Scholar]
- Zacarias, L.; Talon, M.; Ben-Cheikh, W.; Lafuente, M.T.; Primo-Millo, E. Abscisic acid increases in non-growing and paclobutrazol-treated fruits of seedless mandarins. Physiol. Plant. 1995, 95, 613–619. [Google Scholar] [CrossRef]
- AOAC. Vitamin C (Ascorbic Acid) in Vitamin Preparations and Juices; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccready, R.M.; Guggolz, J.; Silviera, V.; Owens, H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
- Huwei, S.; Fan, F.; Juan, L.; Quanzhi, Z. Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply. Front. Plant Sci. 2018, 9, 659. [Google Scholar]
- Kamran, M.; Wennan, S.; Ahmad, I.; Xiangping, M.; Wenwen, C.; Xudong, Z.; Siwei, M.; Khan, A.; Qingfang, H.; Tiening, L. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Sci. Rep. 2018, 8, 4818. [Google Scholar] [CrossRef] [Green Version]
- Sharaf-Eldien, M.N.; El-Bably, S.Z.; Magouz, M.R. Effect of Pinching and Spraying of Paclobutrazol on Vegetative Growth, Flowering and Chemical Composition of Zinnia elegans, Jacq; Faculty of Agriculture, Mansoura University: Mansoura, Egypt, 2017. [Google Scholar]
- Liu, H.M.; Du, Y.X.; Li, J.X.; Zhang, J.Z.; Li, J.; Yue, J.Q. Regulation Effect of Spring-flowering Lemon Treated with Flower Bud-inducing Methods in Dry-hot Valleys in Yunnan. Southwest China J. Agric. Sci. 2016, 29, 1437–1442. [Google Scholar]
- Du, Y.X.; Li, J.; Zhang, J.Z.; Zhu, C.H.; Fu, X.M.; Huang, H.B.; Li, J.X.; Yue, J.Q. Positive and negative regulation effects of various plant growth regulators on yield and quality of lemon. Acta Agric. Jiangxi 2018, 30, 33–37. [Google Scholar]
- Sun, Y.; Chen, X.; Liu, R.; Li, J.A. Effects of different concentrations of gibberellin on flower bud differentiation in tung oil tree. Non Wood For. Res. 2014, 32, 97–100. [Google Scholar]
- Bausher, M.G.; Yelenosky, G. Morphological changes in citrus associated with relatively high concentrations of paclobutrazol. J. Plant Growth Regul. 1987, 5, 139–147. [Google Scholar] [CrossRef]
- Cruz, M.D.C.M.D.; Siqueira, D.L.D.; Salomão, L.C.C.; Cecon, P.R.; Santos, D.D. Levels of carbohydrates in acid lime tree Tahiti treated with paclobutrazol. Rev. Bras. Frutic. 2007, 29, 222–227. [Google Scholar] [CrossRef]
- Yan, Z.; Nie, J.Y.; Xu, G.F.; Li, J.; Li, Z.X.; Wang, X.D.; Kuang, L.X.; Li, H.F.; Li, M.Q. Effect of spraying Paclobutrazol on fruit quality during the period of fruit expansion in spring snow peach. China Fruits 2015, 6, 40–42. [Google Scholar]
- Yang, D. The Effect of Paclobutrazol on Growth and Development of Pingguoli; Yanbian University: Yanji, China, 2008. [Google Scholar]
- Chen, X.G.; Li, H.M.; Zhang, A.J.; Shi, X.M.; Tang, Z.H.; Wei, M.; Shi, C.Y. Effect of paclobutrazol under different N-application rates on photosynthesis and starch accumulation in edible sweet potato. Acta Agron. Sin. 2012, 38, 1728–1733. [Google Scholar]
- Le, R.S.; Barry, G.H. Vegetative growth responses of citrus nursery trees to various growth retardants. Horttechnology 2007, 20, 197–201. [Google Scholar]
- Nagel, O.W.; Henk, K.; Hans, L. Growth rate and biomass partitioning of wildtype and low-gibberellin tomato (Solanum lycopersicum) plants growing at a high and low nitrogen supply. Physiol. Plant. 2001, 111, 33–39. [Google Scholar] [CrossRef]
- Zhang, H.N.; Su, Z.X.; Chen, H.B. Effects of GA3 and PP333 on flower formation, carbon and nitrogen accumulation in leaves of litchi Feizixiao. J. South. Agric. 2016, 47, 2098–2102. [Google Scholar]
- Yang, L.Z.; Pan, C.X.; Shao, S.L.; Tao, C.Y.; Wang, W.; Ying, Y.Q. Effects of PP333 and drought stress on the activity, photosynthetic characteristics, and non-structural carbohydrates of Phyllostachys edulis seedlings. Acta Ecol. Sin. 2018, 38, 2082–2091. [Google Scholar]
- Fu, X.F.; Chen, W.H. The effect of PP333 on the flower promoting and tip-controling of Xuegan orange. South China Fruits 2000, 4, 10. [Google Scholar]
- Cao, S.Y.; Tang, Y.Z.; Zhang, J.C. Effects of GA33 and PP333 on the apple flower bud differentiation course and contents of endogenous hormone. J. Fruit Sci. 2001, 6, 313–316. [Google Scholar]
- Wu, J.H.; Chen, Q.X.; Tang, Z.Q.; Wang, Z.Q.; Ren, S.X. Effects of gibberellin and benzylaminopurine on Yield and quality of Citrus. J. Zhejiang Agric. Sci. 2009, 4, 671–672. [Google Scholar]
Treatment | Fruit Weight (g) | Longitudinal Diameter (cm) | Transverse Diameter (cm) | Fruit Shape Index | Fruit Thick (cm) | Juice Yeild (%) |
---|---|---|---|---|---|---|
CK | 133.87 ± 3.40 a | 7.91 ± 0.23 a | 5.69 ± 0.13 a | 0.72 ± 0.00 c | 0.61 ± 0.03 ab | 39.83 ± 1.23 e |
PBZ200 | 132.90 ± 2.02 a | 8.18 ± 0.03 a | 5.71 ± 0.07 a | 0.70 ± 0.01 c | 0.57 ± 0.01 cd | 45.11 ± 1.22 d |
PBZ400 | 128.90 ± 1.37 b | 7.48 ± 0.23 b | 5.47 ± 0.12 b | 0.73 ± 0.04 c | 0.59 ± 0.02 bc | 48.02 ± 0.32 c |
PBZ600 | 123.10 ± 1.47 c | 6.23 ± 0.16 d | 5.75 ± 0.09 a | 0.92 ± 0.04 a | 0.64 ± 0.02 a | 52.35 ± 1.02 b |
PBZ1200 | 127.83 ± 1.65 b | 7.05 ± 0.14 c | 5.45 ± 0.07 b | 0.77 ± 0.01 b | 0.56 ± 0.02 d | 55.81 ± 1.48 a |
GA50 | 134.6 ± 4.21 a | 7.84 ± 0.42 a | 5.56 ± 0.11 a | 0.71 ± 0.02 c | 0.64 ± 0.04 ab | 42.70 ± 3.11 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Li, J.; Dong, J.; Hu, C.; Li, D.; Tan, Q.; Zhang, J.; Li, J.; Zhou, X.; Zhu, C.; et al. Effects of Different Regulating Measures on the Floral and Nutritional Physiology of Lemon. Agronomy 2022, 12, 2381. https://doi.org/10.3390/agronomy12102381
Du Y, Li J, Dong J, Hu C, Li D, Tan Q, Zhang J, Li J, Zhou X, Zhu C, et al. Effects of Different Regulating Measures on the Floral and Nutritional Physiology of Lemon. Agronomy. 2022; 12(10):2381. https://doi.org/10.3390/agronomy12102381
Chicago/Turabian StyleDu, Yuxia, Jinxue Li, Jianmei Dong, Chengxiao Hu, Danping Li, Qiling Tan, Jinzhi Zhang, Jing Li, Xianyan Zhou, Chunhua Zhu, and et al. 2022. "Effects of Different Regulating Measures on the Floral and Nutritional Physiology of Lemon" Agronomy 12, no. 10: 2381. https://doi.org/10.3390/agronomy12102381
APA StyleDu, Y., Li, J., Dong, J., Hu, C., Li, D., Tan, Q., Zhang, J., Li, J., Zhou, X., Zhu, C., & Lai, X. (2022). Effects of Different Regulating Measures on the Floral and Nutritional Physiology of Lemon. Agronomy, 12(10), 2381. https://doi.org/10.3390/agronomy12102381