Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Pomace
2.2. Chemical Reagents
2.3. Pressurized Liquid Extraction Process
2.4. Determination of Total Polyphenols Fraction (TPF)
2.5. Determination of Antioxidant Capacity by DPPH
2.6. Determination of Antioxidant Capacity by ORAC
2.7. Polyphenols Profile
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of Extracts
3.2. Polyphenol Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CONAPISCO (Comisión Nacional del Pisco) Estadisticas. Available online: https://conapisco.org.pe/estadisticas.html (accessed on 10 January 2021).
- Maicas, S. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of polyphenols from grapes. Int. J. Mol. Sci. 2014, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Huaman-Castilla, N.L.; Mariotti-Celis, M.S.; Perez-Correa, J.R. Polyphenols of Carménère grapes. Mini. Rev. Org. Chem. 2017, 14, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obreque-Slier, E.; Peña-Neira, Á.; López-Solís, R. Precipitation of low molecular weight phenolic compounds of grape seeds cv. Carménère (Vitis vinifera L.) by whole saliva. Eur. Food Res. Technol. 2011, 232, 113–121. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical properties of vitis vinifera Carménère pomace extracts obtained by hot pressurized liquid extraction, and their inhibitory effect on type 2 diabetes mellitus related enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Vanamala, J.; Safe, S.H.; Miller, J.C. The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr. Cancer 2010, 62, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.N.D.; Nascimento, T.D.; Gondim, B.; Velo, M.; Rêgo, R.D.A.; Neto, R.D.; Machado, J.; Silva, M.D.; Araújo, H.; Fonseca, M.; et al. Catechins as model bioactive compounds for biomedical applications. Curr. Pharm. Des. 2020, 26, 4032–4047. [Google Scholar] [CrossRef]
- Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Grand View Research Polyphenols Market Size, Share & Trends Analysis Report By Product (Grape Seed, Green Tea, Cocoa), By Application (Beverages, Food, Feed, Dietary Supplements, Cosmetics), And Segment Forecasts, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis (accessed on 15 January 2021).
- SIGMA ALDRICH Catalog Products. Available online: http://www.sigmaaldrich.com/ (accessed on 6 March 2021).
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Ajila, C.M.; Brar, K.; Verma, M. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Osorio-tobo, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Kovačević, D.B. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. J. Food Eng. 2010, 101, 23–31. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Huamán-Castilla, N.; Pedreschi, F.; Iglesias-Rebolledo, N.; Pérez-Correa, J.R. Impact of an integrated process of hot pressurised liquid extraction–macroporous resin purification over the polyphenols, hydroxymethylfurfural and reducing sugars content of Vitis vinifera ‘Carménère’ pomace extracts. Int. J. Food Sci. Technol. 2018, 53, 1072–1078. [Google Scholar] [CrossRef]
- Huaman-Castilla, N.L.; Mart, M.; Camilo, C.; Pedreschi, F.; Mariotti-Celis, M.; Pérez-Correa, J.R. The impact of temperature and ethanol concentration on the global recovery of specific polyphenols in an integrated HPLE/RP process on Carménère pomace extracts. Molecules 2019, 24, 3145. [Google Scholar] [CrossRef] [Green Version]
- Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process. 2015, 94, 29–38. [Google Scholar] [CrossRef]
- Niculescu, V.C.; Miricioiu, M.; Geana, E.I.; Ionete, R.E.; Paun, N.; Parvulescu, V. Silica mesoporous materials—An efficient sorbent for wine polyphenols separation. Rev. Chim. 2019, 70, 1513–1517. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Bulnes, P.; Zúñiga, M.C.; Pérez-Jiménez, J.; Torres, J.L.; Mateos-Martín, M.L.; Agosin, E.; Pérez-Correa, J.R. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 2013, 61, 6929–6936. [Google Scholar] [CrossRef] [PubMed]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; Martinez de la Ossa, E.J. Green extraction of antioxidants from different varieties of red grape pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Warnier, M.; Pedreschi, R.; Rees, J.F.; Larondelle, Y. Antioxidant properties of mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chem. 2008, 111, 98–105. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind. Crops Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- Wijngaard, H.; Brunton, N. The optimization of extraction of antioxidants from apple pomace by pressurized liquids. J. Agric. Food Chem. 2009, 57, 10625–10631. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Amiri, H.; Jazi, B. Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study. J. Solut. Chem. 2010, 39, 701–708. [Google Scholar] [CrossRef]
- Jessop, P.G.; Jessop, D.A.; Fu, D.; Phan, L. Solvatochromic parameters for solvents of interest in green chemistry. Green Chem. 2012, 14, 1245–1259. [Google Scholar] [CrossRef]
- Piñeiro, Z.; Palma, M.; Barroso, C.G. Determination of catechins by means of extraction with pressurized liquids. J. Chromatogr. A 2004, 1026, 19–23. [Google Scholar] [CrossRef]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. Nutr. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Plaza, M.; Abrahamsson, V.; Turner, C. Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. J. Agric. Food Chem. 2013, 61, 5500–5510. [Google Scholar] [CrossRef]
- Fuleki, T.; Ricardo da Silva, J.M. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario. J. Agric. Food Chem. 1997, 45, 1156–1160. [Google Scholar] [CrossRef]
- Ćurko, N.; Ganić, K.K.; Gracin, L.; Dapić, M.; Jourdes, M.; Teissedre, P.L. Characterization of seed and skin polyphenolic extracts of two red grape cultivars grown in Croatia and their sensory perception in a wine model medium. Food Chem. 2014, 145, 15–22. [Google Scholar] [CrossRef]
HPLE Process | TPC (mg GAE/g dw) | DPPH (IC50: mg/mL) | ORAC (µM TE/g dw) | ||||
---|---|---|---|---|---|---|---|
T °C | EtOH | Skin Mean CV | Seeds Mean CV | Skin Mean CV | Seeds Mean CV | Skin Mean CV | Seeds Mean CV |
100 °C | 20% | 0.46A,a 0.09 | 5.66B,a 0.03 | 121.91A,a 0.08 | 39.63B,a 0.01 | 10.25A,a 0.11 | 87.45B,a 0.06 |
100 °C | 60% | 0.71A,b 0.08 | 7.45B,b 0.09 | 118.56A,a 0.07 | 32.91B,b 0.03 | 11.98A,a 0.08 | 102.48B,b 0.08 |
130 °C | 40% | 0.76A,b 0.10 | 9.93B,c 0.11 | 113.90A,b 0.05 | 31.23B,b 0.03 | 16.78A,b 0.10 | 115.24B,b 0.10 |
160 °C | 20% | 1.44A,c 0.11 | 10.56B,d 0.03 | 74.14A,c 0.04 | 19.89B,c 0.02 | 22.11A,c 0.06 | 128.42B,c 0.07 |
160 °C | 60% | 1.98A,d 0.06 | 12.54B,d 0.02 | 62.12A,d 0.04 | 16.16B,d 0.02 | 36.33A,d 0.06 | 137.65B,d 0.11 |
Description | HPLE Process | |||||
---|---|---|---|---|---|---|
100 °C-20% | 100 °C-60% | 130 °C-40% | 160 °C-20% | 160 °C-60% | ||
Mean CV | Mean CV | Mean CV | Mean CV | Mean CV | ||
Phenolic acids (µg/gdw) | ||||||
Gallic | Seed | 6.52a,A 0.03 | 7.82a,B 0.04 | 9.14a,C 0.04 | 19.60a,D 0.04 | 21.66a,E 0.06 |
skin | 0.22b,A 0.05 | 0.65b,B 0.03 | 1.03b,C 0.05 | 1.32b,D 0.02 | 1.67b,E 0.05 | |
Ellagic | Seed | ND | ND | ND | 2.12a,A 0.02 | 4.55a,B 0.02 |
skin | ND | 0.01A 0.02 | 0.54B 0.01 | 1.67b,C 0.05 | 2.51b,D 0.03 | |
Protocatechuic | Seed | ND | ND | 0.68a,A 0.07 | 3.33a,B 0.03 | 5.31a,C 0.08 |
skin | ND | ND | 0.11b,A 0.03 | 0.13b,A 0.02 | 0.22b,B 0.01 | |
Caffeic | Seed | ND | ND | ND | 3.02a,A 0.04 | 4.92a,B 0.04 |
skin | ND | 0.48A 0.06 | 1.28B 0.05 | 1.54b,B 0.06 | 2.53b,C 0.06 | |
Chlorogenic | Seed | 4.92A 0.01 | 5.12A 0.02 | 5.69B 0.03 | 4.82a,A 0.05 | 6.66C 0.07 |
skin | ND | ND | ND | 1.38b 0.02 | ND | |
Coumaric | Seed | 0.25A 0.02 | 0.31B 0.03 | 0.21A 0.02 | 0.65a,C 0.07 | 2.24D 0.02 |
skin | ND | ND | ND | 0.37a 0.03 | ND | |
Flavanols (µg/gdw) | ||||||
Catechin | Seed | 47.33a,C 0.03 | 46.05a,C 0.04 | 85.92a,A 0.05 | 96.33a,B 0.07 | 85.91a,A 0.08 |
skin | 0.01b,A 0.00 | 0.21b,B 0.01 | 0.63b,C 0.02 | 1.11b,D 0.02 | 0.17b,B 0.03 | |
Epicatechin | Seed | 17.60a,A 0.05 | 15.62a,A 0.07 | 36.25a,C 0.04 | 41.72a,D 0.06 | 28.53a,B 0.07 |
skin | 3.74b,A 0.02 | 1.16b,B 0.02 | 5.41b,C 0.01 | 7.23b,C 0.02 | 1.07b,A 0.02 | |
Epigallocatechin | Seed | 7.22a,A 0.03 | 1.23a,C 0.02 | 1.98a,B 0.03 | 18.14a,D 0.04 | 13.21a,E 0.08 |
skin | 0.01b,A 0.00 | 0.01b,A 0.00 | 0.47b,B 0.02 | 2.03b,B 0.02 | 0.53b,C 0.03 | |
Gallocatechin | Seed | 6.52a,A 0.03 | 3.18B 0.03 | 6.12a,B 0.04 | 7.42C 0.04 | 3.27A 0.09 |
skin | 0.67a 0.02 | ND | 0.34b 0.03 | ND | ND | |
Flavonols (µg/gdw) | ||||||
Quercetin | Seed | ND | ND | ND | ND | ND |
skin | 11.72C 0.02 | 8.61B 0.03 | 9.25B 0.03 | 12.41C 0.03 | 3.21A 0.02 | |
Kaempferol | Seed | ND | ND | ND | ND | ND |
skin | 2.51C 0.05 | 1.83B 0.02 | 1.52A 0.02 | 5.12D 0.06 | 2.93C 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allcca-Alca, E.E.; León-Calvo, N.C.; Luque-Vilca, O.M.; Martínez-Cifuentes, M.; Pérez-Correa, J.R.; Mariotti-Celis, M.S.; Huamán-Castilla, N.L. Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy 2021, 11, 866. https://doi.org/10.3390/agronomy11050866
Allcca-Alca EE, León-Calvo NC, Luque-Vilca OM, Martínez-Cifuentes M, Pérez-Correa JR, Mariotti-Celis MS, Huamán-Castilla NL. Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy. 2021; 11(5):866. https://doi.org/10.3390/agronomy11050866
Chicago/Turabian StyleAllcca-Alca, Erik E., Nilton C. León-Calvo, Olivia M. Luque-Vilca, Maximiliano Martínez-Cifuentes, José Ricardo Pérez-Correa, María Salomé Mariotti-Celis, and Nils Leander Huamán-Castilla. 2021. "Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste" Agronomy 11, no. 5: 866. https://doi.org/10.3390/agronomy11050866
APA StyleAllcca-Alca, E. E., León-Calvo, N. C., Luque-Vilca, O. M., Martínez-Cifuentes, M., Pérez-Correa, J. R., Mariotti-Celis, M. S., & Huamán-Castilla, N. L. (2021). Hot Pressurized Liquid Extraction of Polyphenols from the Skin and Seeds of Vitis vinifera L. cv. Negra Criolla Pomace a Peruvian Native Pisco Industry Waste. Agronomy, 11(5), 866. https://doi.org/10.3390/agronomy11050866