Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Experimental Design
2.2. Treatment Applications
2.3. Plant Residue Analyses
2.4. Soil Sampling and Analysis
2.5. Soil Organic Carbon (SOC) and Total Nitrogen (TN) Stocks
2.6. Stratification Soil Properties
2.7. Soil Physical Analysis
2.7.1. Aggregate Stability Indexes Determination
2.7.2. Soil Infiltration and Available Water
2.8. Yield Measurement
2.9. Statistical Analyses
3. Results and Discussion
3.1. Weather Conditions
3.2. Soil Chemical Properties
3.2.1. Soil pH and EC
3.2.2. Soil Organic Carbon (SOC) and C:N Ratio
3.2.3. Total Nitrogen (TN), Available K (Ava K), and Available P (Ava P)
3.2.4. Micronutrients (Fe, Mn, Cu, Zn)
3.2.5. Soil Organic Carbon (SOC) and Total Nitrogen (TN) Stocks at 0–10 and 10–20 cm Soil Depths
3.3. Soil Physical Properties
3.3.1. Aggregates Mean Weight Diameter in Wet (MWDw) and Dry Condition (MWDd) Conditions
3.3.2. Water-Stable Aggregates (WSA) and Dry-Stable Aggregates (DSA)
3.3.3. Available Water
3.4. Stratification Ratio (SR) of Soil Properties
3.5. Soil Infiltration Rate
3.6. Wheat and Corn Yield
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, S.; Alsafadi, K.; Talukdar, S.; Kiwan, S.; Hennawi, S.; Alshihabi, O.; Sharaf, M.; Harsanyie, E. Estimation of Soil Erosion Risk in Southern Part of Syria by Using RUSLE Integrating Geo Informatics Approach. Remote Sensing Applications: J. Soc. Environ. 2020, 20, 100375. [Google Scholar] [CrossRef]
- Enaruvbe, G.O.; Keculah, K.M.; Atedhor, G.O.; Osewole, A.O. Armed Conflict and Mining Induced Land-Use Transition in Northern Nimba County, Liberia. J. Glob. Ecol. Conserv. 2019, 17, e00597. [Google Scholar] [CrossRef]
- Bayu, E.K. Determinant Variables for Women’s Participation in Soil and Water Conservation Practices in North Western Ethiopia: The Case of Shebel Berenta District (Woreda), East Gojjam Zone, Amhara National Regional State. J. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Lal, R. World soils and global issues. J. Soil Tillage Res. 2007, 97, 1–4. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; López-Vicente, M.; Kumar, V.; Rodríguez-Seijo, A.; Valkó, O.; Rojas, C.; Pourghasemi, H.R.; Salvati, L.; Bakr, N.; Vaudour, E.; et al. Soil Science Challenges in a New Era: A Transdisciplinary Overview of Relevant Topics. J. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Bridges, E.M.; Oldeman, L.R. Global Assessment of Human-Induced Soil Degradation. J. Arid Soil Res. Rehab. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Fraser, D. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Dhaliwal, S.; Naresh, R.; Mandal, A.; Singh, R.; Dhaliwal, M. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. J. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Lyles, L.; Allison, B.E. Equivalent wind-erosion protection of selected crop residues. Transact. ASAE 1981, 24, 0405–0408. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. J. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Barman, D. Crop residue management and greenhouse gases emissions in tropical rice lands. In Soil Management and Climate Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 323–335. [Google Scholar] [CrossRef]
- Maw, M.J.; Goyne, K.W.; Fritschi, F.B. Soil carbon changes following conversion to annual biofuel feedstocks on marginal lands. Agron. J. 2019, 111, 4–13. [Google Scholar] [CrossRef]
- Orr, M.-J.; Gray, M.B.; Applegate, B.; Volenec, J.J.; Brouder, S.M.; Turco, R.F. Transition to second generation cellulosic biofuel production systems reveals limited negative impacts on the soil microbial community structure. J. Appl. Soil Ecol. 2015, 95, 62–72. [Google Scholar] [CrossRef]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.; Wright, L.L. Current and potential US corn stover supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Vasconcelos, A.L.S.; Cherubin, M.R.; Feigl, B.J.; Cerri, C.E.; Gmach, M.R.; Siqueira-Neto, M. Greenhouse gas emission responses to sugarcane straw removal. Biomass Bioenerg. 2018, 113, 15–21. [Google Scholar] [CrossRef]
- Kumari, K.; Prasad, J.; Solanki, I.S.; Chaudhary, R. Long-term effect of crop residues incorporation on yield and soil physical properties under rice-wheat cropping system in calcareous soil. J. Soil Sci. Plant Nutr. 2018, 18, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W.; Wilhelm, W.W.; Power, J.F. Crop residue removal and soil productivity with no-till corn, sorghum, and soybean. Soil Sci. Soc. Am. J. 1984, 48, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Power, J.F.; Koerner, P.T.; Doran, J.W.; Wilhelm, W.W. Residual effects of crop residues on grain production and selected soil properties. Soil Sci. Soc. Am. J. 1998, 62, 1393–1397. [Google Scholar] [CrossRef] [Green Version]
- De Aquino, G.S.; Medina, C.D.C. Productivity and biometric and physiological indices of sugarcane grown under different amounts of straw. Pesqui. Agropecu. Brasil. 2014, 49, 173–180. [Google Scholar]
- Aquino, G.S.D.; Medina, C.D.C.; Porteira, A.L., Jr.; Santos, L.O.; Cunha, A.C.B.; Kussaba, D.A.O.; Santiago, A.D. Root system and productivity of sugarcane ratoon associated to different quantities of straw. Pesqui. Agropecu. Brasil. 2015, 50, 1150–1159. [Google Scholar] [CrossRef] [Green Version]
- Kenney, I.; Blanco-Canqui, H.; Presley, D.R.; Rice, C.W.; Janssen, K.; Olson, B. Soil and crop response to stover removal from rainfed and irrigated corn. Gcb Bioenerg. 2015, 7, 219–230. [Google Scholar] [CrossRef]
- Jin, V.L.; Schmer, M.R.; Wienhold, B.J.; Stewart, C.E.; Varvel, G.E.; Sindelar, A.J.; Vogel, K.P. Twelve years of stover removal increases soil erosion potential without impacting yield. Soil. Sci. Soc. Am. J. 2015, 79, 1169–1178. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 2007, 141, 355–362. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ferguson, R.B.; Jin, V.L.; Schmer, M.R.; Wienhold, B.J.; Tatarko, J. Can cover crop and manure maintain soil properties after stover removal from irrigated no-till corn? Soil Sci. Soc. Am. J. 2014, 78, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- Schertz, D.L. Conservation tillage: An analysis of acreage projections in the United States. J. Soil Water Conserv. 1988, 43, 256–258. [Google Scholar]
- Ball, B.C.; Robertson, E.A.G. Straw incorporation and tillage methods: Straw decomposition, denitrification and growth and yield of winter barley. J. Agric. Eng. Res. 1990, 46, 223–243. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bandyopadhyay, K.K.; Pradhan, S.; Singh, R.; Datta, S.P. Effects of irrigation, crop residue mulch and nitrogen management in maize (Zea mays L.) on soil carbon pools in a sandy loam soil of Indo-gangetic plain region. Catena 2018, 165, 207–216. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Sulieman, M.; Rodrigo-Comino, J. Determining the Spatial Distribution of Soil Properties Using the Environmental Covariates and Multivariate Statistical Analysis: A Case Study in Semi-Arid Regions of Iran. J. Arid Land 2019, 11, 551–566. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Keshavarzi, A.; Bagherzadeh, A.; Brevik, E.C. The use of multivariate statistical analysis and soil quality indices as tools to be included in regional management plans. A case study from the Mashhad Plain, Iran. Cuad. Investig. Geogr. 2019, 45, 687–708. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Jeeney, D.R. Methods of soil analysis, part 2: Chemical and mineralogical properties. Amer. Soc. Agron. 1982, 1159. [Google Scholar]
- Knudsen, D.; Peterson, G.; Pratt, P. Methods of Soil Analysis. Chemical and Microbiological Properties. Amer. Soc. Agron. 1982, 229–230. [Google Scholar]
- Bremmer, J.M.; Mulvaney, C.S. Methods of soil analysis, Part 2. Chemical and microbiological properties. Agronomy 1965, 9, 1179–1237. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C. Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil Tillage Res. 2006, 91, 68–74. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Short-term effects of olive mill by-products on soil organic carbon, total N, C: N ratio and stratification ratios in a Mediterranean olive grove. Agric. Ecosyst. Environ. 2013, 165, 68–73. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Elliott, E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. Methods of soil analysis. Part 1. Physical and mineralogical methods. Soil Sci. Soc. Am. J. 1986, 425–442. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Tuti, M.; Kundu, S.; Bisht, J.; Bhatt, J. Conservation tillage impacts on soil aggregation and carbon pools in a sandy clay loam soil of the Indian Himalayas. Soil Sci. Soc. Am. J. 2012, 76, 617–627. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; McDonald, A. Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients. Geoderma 2019, 340, 104–114. [Google Scholar] [CrossRef]
- Shahabinejad, N.; Mahmoodabadi, M.; Jalalian, A.; Chavoshi, E. The fractionation of soil aggregates associated with primary particles influencing wind erosion rates in arid to semiarid environments. Geoderma 2019, 356, 113936. [Google Scholar] [CrossRef]
- Reynolds, W.D. Saturated and field-unsaturated water flow parameters: Laboratory methods. Phys. Methods 2002, 802–817. [Google Scholar]
- Cassel, D.K.; Nielsen, D.R. Field capacity and available water capacity. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 901–926. [Google Scholar]
- Ghosheh, H.Z.; Bsoul, E.Y.; Abdullah, A.Y. Utilization of alfalfa (Medicago sativa L.) as a smother crop in field corn (Zea mays L.). J. Sustain. Agric. 2005, 25, 5–17. [Google Scholar] [CrossRef]
- Roozeboom, K.L.; Wang, D.; McGowan, A.R.; Propheter, J.L.; Staggenborg, S.A.; Rice, C.W. Long-term biomass and potential ethanol yields of annual and perennial biofuel crops. Agron. J. 2019, 111, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, W.L.; Reid, J.T.; Touchton, J.T.; Gallaher, R.N. Influence of Tillage Practices on the Fertility Status of an Acid Soil Double-Cropped to Wheat and Soybeans 1. Agron. J. 1982, 74, 684–687. [Google Scholar] [CrossRef]
- Blevins, R.L.; Smith, M.S.; Thomas, G.W. Changes in soil properties under no-tillage. In No-Tillage Agriculture; Springer: Boston, MA, USA, 1984; pp. 190–230. [Google Scholar] [CrossRef]
- Edwards, J.H.; Wood, C.W.; Thurlow, D.L.; Ruf, M.E. Tillage and crop rotation effects on fertility status of a Hapludult soil. Soil Sci. Soc. Am. J. 1992, 56, 1577–1582. [Google Scholar] [CrossRef]
- Motta, A.C.; Reeves, D.W.; Touchton, J.T. Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils. Commun. Soil Sci. Plant Anal. 2002, 33, 913–932. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.A.; Telles, T.S.; Machado, W.; Hungria, M.; Tavares Filho, J.; de Fátima Guimarães, M. Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. J. Agric. Ecosyst. Environ. 2012, 155, 1–6. [Google Scholar] [CrossRef]
- Tang, C.; Rengel, Z. Role of plant cation/anion uptake ratio in soil acidification. In Handbook of Soil Acidity; Marcel Dekker: New York, NY, USA, 2003; pp. 57–81. [Google Scholar] [CrossRef]
- Butterly, C.; Baldock, J.; Tang, C. Chemical mechanisms of soil pH change by agricultural residues. In Dalam: 19th World Congress of Soil Science, Soil Solutions for a Changing World; International Union of Soil Sciences: Brisbane, Australia, 2010; Volume 4, pp. 1–6. [Google Scholar]
- Rahman, M.H.; Okubo, A.; Sugiyama, S.; Mayland, H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008, 101, 10–19. [Google Scholar] [CrossRef]
- Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 2019, 337, 927–934. [Google Scholar] [CrossRef]
- Malobane, M.E.; Nciizah, A.D.; Mudau, F.N.; Wakindiki, I.I. Tillage, crop rotation and crop residue management effects on nutrient availability in a sweet sorghum-based cropping system in marginal soils of South Africa. Agronomy 2020, 10, 776. [Google Scholar] [CrossRef]
- Saha, S.; Chakraborty, D.; Sharma, A.R.; Tomoar, R.K.; Bhadraray, S.; Sen, U.; Kalra, N. Effect of tillage and residue management on soil physical properties and crop productivity in maize (Zea mays)–Indian mustard (Brassica juncea) system. Indian J. Agric. Sci. 2010, 80, 679–685. [Google Scholar]
- Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res. 2006, 87, 19–27. [Google Scholar] [CrossRef]
- You, D.; Tian, P.; Sui, P.; Zhang, W.; Yang, B.; Qi, H. Short-term effects of tillage and residue on spring maize yield through regulating root-shoot ratio in Northeast China. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemtiri, A.; Colinet, G.; Alabi, T.; Bodson, B.; Olivier, C.; Brostaux, Y.; Francis, F. Short-Term Effects of Tillage Practices and Crop Residue Exportation on Soil Organic Matter and Earthworm Communities in Silt Loam Arable Soil. In Soil Management and Climate Change; Academic Press: Cambridge, MA, USA, 2018; pp. 53–71. [Google Scholar] [CrossRef]
- Pandiaraj, T.; Selvaraj, S.; Ramu, N. Effects of Crop Residue Management and Nitrogen Fertilizer on Soil Nitrogen and Carbon Content and Productivity of Wheat (Triticum aestivum L.) in Two Cropping Systems. J. Agric. Sci. Tech. 2015, 17, 249–260. [Google Scholar]
- Dong, Q.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. J. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Kendall, J.R.; Long, D.S.; Collins, H.P.; Pierce, F.J.; Chatterjee, A.; Smith, J.L.; Young, S.L. Soil carbon dynamics of transition to Pacific Northwest cellulosic ethanol feedstock production. Soil. Sci. Soc. Am. J. 2015, 79, 272–281. [Google Scholar] [CrossRef]
- Stetson, S.J.; Osborne, S.L.; Schumacher, T.E.; Eynard, A.; Chilom, G.; Rice, J.; Pikul, J.L., Jr. Corn residue removal impact on topsoil organic carbon in a corn–soybean rotation. Soil Sci. Soc. Am. J. 2012, 76, 1399–1406. [Google Scholar] [CrossRef]
- Chalise, K.S.; Singh, S.; Wegner, B.R.; Kumar, S.; Pérez-Gutiérrez, J.D.; Osborne, S.L.; Rohila, J.S. Cover crops and returning residue impact on soil organic carbon, bulk density, penetration resistance, water retention, infiltration, and soybean yield. Agron. J. 2019, 111, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.; Govaerts, B.; De León, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J. Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Thibaud, G.R. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil Tillage Res. 2019, 190, 147–156. [Google Scholar] [CrossRef]
- Neugschwandtner, R.; Liebhard, P.; Kaul, H.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. J. Plant Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. J. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Noack, S.R.; McBeath, T.M.; McLaughlin, M.J.; Smernik, R.J.; Armstrong, R.D. Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labelling experiment. J. Soil Biol. Biochem. 2014, 71, 31–39. [Google Scholar] [CrossRef]
- Ojha, S.; Sourabh, S.; Dasgupta, S.; Das, D.; Sarkar, A. Influence of different organic amendments on Fe, Mn, Cu and Zn availability in Indian soils. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2435–2445. [Google Scholar] [CrossRef]
- Richards, J.R.; Zhang, H.; Schroder, J.L.; Hattey, J.A.; Raun, W.R.; Payton, M.E. Micronutrient availability as affected by the long-term application of phosphorus fertilizer and organic amendments. Soil Sci. Soc. Am. J. 2011, 75, 927–939. [Google Scholar] [CrossRef]
- Monreal, C.; DeRosa, M.; Mallubhotla, S.; Bindraban, P.; Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. J. Biol. Fertil. Soils 2016, 52, 423–437. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Puget, P.; Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res. 2005, 80, 201–213. [Google Scholar] [CrossRef]
- McLauchlan, K.K. Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture. Geoderma 2006, 136, 289–299. [Google Scholar] [CrossRef]
- Côté, L.; Brown, S.; Paré, D.; Fyles, J.; Bauhus, J. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biol. Biochem. 2000, 32, 1079–1090. [Google Scholar] [CrossRef]
- Lichter, K.; Govaerts, B.; Six, J.; Sayre, K.D.; Deckers, J.; Dendooven, L. Aggregation and C and N contents of soil organic matter fractions in a permanent raised-bed planting system in the Highlands of Central Mexico. Plant Soil 2008, 305, 237–252. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Kienle, F.; Limon-Ortega, A.; Deckers, J.; Raes, D.; Sayre, K.D. The importance of crop residue management in maintaining soil quality in zero tillage systems ‘A comparison between long-term trials in rainfed and irrigated wheat systems. In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009; pp. 71–79. [Google Scholar]
- Malhi, S.S.; Lemke, R.; Wang, Z.H.; Chhabra, B.S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res. 2006, 90, 171–183. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Bandyopadhyay, K.K.; Pradhan, S.; Singh, R.; Datta, S.P. Influence of irrigation, crop residue mulch and nitrogen management practices on soil physical quality. J. Indian Soc. Soil Sci. 2016, 64, 351–367. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. J. Agri. Ecosys. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. J. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Shaver, T.M.; Peterson, G.A.; Sherrod, L.A. Cropping intensification in dryland systems improves soil physical properties: Regression relations. Geoderma 2003, 116, 149–164. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.; Han, Q.; Ren, X. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230, 41–49. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R.; Post, W.; Izaurralde, R.; Owens, L. Soil structural parameters and organic carbon in no-till corn with variable stover retention rates. Soil Sci. 2006, 171, 468–482. [Google Scholar] [CrossRef]
- Singh, B.; Malhi, S. Response of soil physical properties to tillage and residue management on two soils in a cool temperate environment. Soil Tillage Res. 2006, 85, 143–153. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Unger, P. Residue effects on soil physical properties. In Managing Agricultural Residues; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 123–141. [Google Scholar]
- Wegner, B.R.; Kumar, S.; Osborne, S.L.; Schumacher, T.E.; Vahyala, I.E.; Eynard, A. Soil response to corn residue removal and cover crops in eastern South Dakota. Soil Sci. Soc. Am. J. 2015, 79, 1179–1187. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. J. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Smith, P.; Lutfalla, S.; Riley, W.J.; Torn, M.S.; Schmidt, M.W.; Soussana, J.F. The changing faces of soil organic matter research. Eur. J. Soil Sci. 2018, 69, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA. J. Soil Tillage Res. 2005, 81, 239–252. [Google Scholar] [CrossRef]
- Sindelar, M.; Blanco-Canqui, H.; Jin, V.L.; Ferguson, R. Cover crops and corn residue removal: Impacts on soil hydraulic properties and their relationships with carbon. Soil Sci. Soc. Am. J. 2019, 83, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kaur, J. Impact of conservation tillage on soil properties in rice-wheat cropping system. Agric. Sci. Res. J. 2012, 2, 30–41. [Google Scholar]
- Reynolds, W.; Drury, C.; Yang, X.; Fox, C.; Tan, C.; Zhang, T. Land management effects on the near-surface physical quality of a clay loam soil. J.Soil Tillage Res. 2007, 96, 316–330. [Google Scholar] [CrossRef]
- Jemai, I.; Aissa, N.B.; Guirat, S.B.; Ben-Hammouda, M.; Gallali, T. Impact of three and seven years of no-tillage on the soil water storage, in the plant root zone, under a dry subhumid Tunisian climate. J. Soil Tillage Res. 2013, 126, 26–33. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, C.; Huang, Y.; Huang, H.; Yang, B.; Zhao, Z.; Jia, Z. Effects of different straw mulch modes on soil water storage and water use efficiency of spring maize (Zea mays L.) in the Loess Plateau of China. Plant Soil Environ. 2015, 61, 253–259. [Google Scholar] [CrossRef] [Green Version]
- De Moraes Sa, J.C.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. J. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Chen, X.; He, X.; Zhao, K. Stratification of soil organic C, N and C: N ratio as affected by conservation tillage in two maize fields of China. Catena 2012, 95, 124–130. [Google Scholar] [CrossRef]
- Moreno, F.; Murillo, J.M.; Pelegrín, F.; Girón, I.F. Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. J. Soil Tillage Res. 2006, 85, 86–93. [Google Scholar] [CrossRef]
- Wright, A.L.; Hons, F.M.; Lemon, R.G.; McFarland, M.L.; Nichols, R.L. Stratification of nutrients in soil for different tillage regimes and cotton rotations. J. Soil Tillage Res. 2007, 96, 19–27. [Google Scholar] [CrossRef]
- Johnson, J.M.; Strock, J.S.; Tallaksen, J.E.; Reese, M. Corn stover harvest changes soil hydrology and soil aggregation. J. Soil Tillage Res. 2016, 161, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Z.; Li, S.; Gao, Y.; Tian, X. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. J. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.; Sharma, D.; Singh, S.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. J. Soil Tillage Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Mu, X.; Zhao, Y.; Liu, K.; Ji, B.; Guo, H.; Xue, Z.; Li, C. Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. Eur. J. Agron. 2016, 78, 32–43. [Google Scholar] [CrossRef]
- Pant, P.K.; Ram, S.; Singh, V. Yield and soil organic matter dynamics as affected by the long-term use of organic and inorganic fertilizers under rice–wheat cropping system in subtropical mollisols. J. Agric. Res. 2017, 6, 399–409. [Google Scholar] [CrossRef]
- Mohammad, W.; Shah, S.M.; Shehzadi, S.; Shah, S.A. Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan. J. Soil Sci. Plant Nutrit. 2012, 12, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Birrell, S.J.; Karlen, D.L.; Wirt, A. Development of sustainable corn stover harvest strategies for cellulosic ethanol production. BioEnerg. Res. 2014, 7, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Ulmer, K.M.; Rasby, R.J.; MacDonald, J.C.; Blanco-Canqui, H.; Rakkar, M.K.; Cox, J.L.; Drewnoski, M.E. Baling or grazing of corn residue does not reduce crop production in Central United States. Agron. J. 2019, 111, 122–127. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. J. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Terol, E.; Mora, G.; Gimenez-Morera, A.; Cerdà, A. Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards (Vitis vinifera L.). Earth Syst. Environ. 2020, 4, 827–842. [Google Scholar] [CrossRef]
Soil Properties | Conventional Tillage (CT) | No-Tillage (NT) | ||
---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
pH | † 7.83 ± 0.11 | 7.78 ± 0.13 | 7.85 ± 0.07 | 7.6 ± 0.11 |
EC (ds m−1) | 0.91 ± 0.01 | 0.75 ± 0.25 | 1.06 ± 0.06 | 0.73 ± 0.16 |
OC (mg/g) | 0.92 ± 0.13 | 0.86 ± 0.16 | 1.25 ± 0.05 | 1.01 ± 0.11 |
TN (mg/g) | 0.09 ± 0.01 | 0.07 ± 0.01 | 0.11 ± 0.02 | 0.08 ± 0.01 |
Avail. K (mg kg−1) | 167 ± 4.46 | 134.23 ± 3.12 | 279.04 ± 5.19 | 237.42 ± 6.04 |
Ava P (mg kg−1) | 8.72 ± 0.20 | 9.54 ± 0.65 | 15.05 ± 1.42 | 15.34 ± 0.73 |
Ava Fe (mg kg−1) | 13 ± 0.50 | 13.94 ± 0.16 | 9.26 ± 0.89 | 8.51 ± 0.50 |
Ava Zn (mg kg−1) | 2.57 ± 0.51 | 2.64 ± 0.36 | 2.84 ± 0.26 | 1.75 ± 0.21 |
Ava Cu (mg kg−1) | 1 ± 0.19 | 1.32 ± 0.06 | 1.65 ± 0.14 | 1.53 ± 0.16 |
Ava Mn (mg kg−1) | 12.4 ± 0.64 | 11.68 ± 0.96 | 16.25 ± 0.70 | 15 ± 1.27 |
Bulk density (mg m−3) | 1.21 ± 0.04 | 1.27 ± 0.08 | 1.38 ± 0.01 | 1.45 ± 0.08 |
Total Porosity (%) | 54.7 ± 2.16 | 52.07 ± 1.06 | 47.92 ± 1.86 | 45.28 ± 0.91 |
Sand (%) | 56.9 ± 1.33 | 52.5 ± 0.79 | 27.9 ± 0.35 | 27.3 ± 0.72 |
Silt (%) | 24.4 ± 1.46 | 28.08 ± 1.35 | 42.09 ± 0.18 | 41.64 ± 0.60 |
Clay (%) | 18.6 ± 1.27 | 19.42 ± 2.10 | 30 ± 0.35 | 31.03 ± 0.72 |
Soil texture | Sandy Loam | Sandy Loam | Clay Loam | Clay Loam |
Plant Residue | N | P | K | C | C/N | Fe | Mn | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|
% | - | mg kg−1 Dry Matter | |||||||
Wheat | † 0.84 ± 0.12 | 0.09 ± 0.01 | 1.75 ± 0.07 | 55.4 ± 1.80 | 66 ± 2.56 | 119 ± 2.87 | 27 ± 1.63 | 17 ± 1.63 | 32 ± 2.16 |
Corn | 0.92 ± 0.06 | 0.25 ± 0.02 | 1.08 ± 0.01 | 53.65 ± 1.30 | 58 ± 1.63 | 144.59 ± 4.30 | 33.64 ± 2.49 | 14.52 ± 0.88 | 26.12 ± 1.67 |
Tillage | Residue Rate | pH | EC | OC | TN | C:N | P | K |
---|---|---|---|---|---|---|---|---|
CT | R100 | † 8.08 ± 09 a | 0.98 ± 0.08 abc | 1.17 ± 06 cd | 0.13± 0.01 ab | 9.14 ± 1.41 b | 12.99 ± 0.83 e | 238.7± 8.79 6 e |
R75 | 8.00 ± 0.09 ab | 0.97 ± 0.13 abc | 1.11 ± 0.05 de | 0.12 ± 0.01 ab | 8.83 ± 0.56 b | 11.32 ± 0.76 f | 224.37 ± 19.16 ef | |
R50 | 8.01 ± 0.03 ab | 0.88 ± 0.26 bc | 1.07 ± 0.07 ef | 0.13 ± 0.01 a | 8.08 ± 1.43 b | 10.93 ± 0.82 fg | 213.44 ± 17.66 f | |
R25 | 7.98 ± 0.08 ab | 0.84 ± 0.16 c | 1.02 ± 0.06 f | 0.11 ± 0.01 cde | 9.29 ± 1.22 b | 10.10 ± 0.53 fg | 179.70 ± 11 g | |
R0 | 7.94 ± 0.06 ab | 1.04 ± 0.13 a | 0.84 ± 0.06 g | 0.09 ± 0.00 e | 8.52 ± 0.86 b | 9.72 ± 0.47 g | 161.76 ± 19.86 h | |
NT | R100 | 7.70 ± 0.07 c | 1.10 ± 0.05 a | 1.41 ± 0.16 a | 0.12 ± 0.03 bc | 12.27 ± 2.19 a | 25.08 ± 3.86 a | 373.28 ± 62.81 bc |
R75 | 7.73 ± 0.12 c | 1.05 ± 0.05 a | 1.35 ± 0.15 ab | 0.11 ± 0.03 c | 11.92 ± 1.86 a | 23.47 ± 2.71 b | 396.34 ± 60.43 a | |
R50 | 7.72 ± 0.05 c | 1.01 ± 0.04 ab | 1.32 ± 0.14 b | 0.11 ± 0.03 bcd | 12.13 ± 2.69 a | 20.59 ± 4.63 c | 382.70 ± 55.07 ab | |
R25 | 7.74 ± 0.09 c | 1.01 ± 0.03 ab | 1.23 ± 0.1 c | 0.10 ± 0.02 de | 12.28 ± 1.93 a | 20.50 ± 3.24 c | 364.6 ± 23.1 c | |
R0 | 7.73 ± 0.11 c | 1.01 ± 0.09 ab | 1.09 ± 0.06 e | 0.09 ± 0.01 e | 11.35 ± 1.26 a | 17.91 ± 1.77 d | 296.89 ± 35.29 d |
Tillage | Residue Rate | Fe | Mn | Cu | Zn |
---|---|---|---|---|---|
CT | R100 | † 16.77 ± 3.08 a | 15.57 ± 1.4 de | 1.82 ± 0.13 a | 4.02 ± 0.5 a |
R75 | 15.40 ± 1.62 ab | 13.90 ± 0.92 f | 1.61 ± 0.14 bc | 3.00 ± 0.34 bc | |
R50 | 14.30 ± 1.93 bc | 12.98 ± 1.19 fg | 1.55 ± 0.1 bc | 3.54 ± 0.43 ab | |
R25 | 13.72 ± 1.76 c | 11.81 ± 1.16 gh | 1.46 ± 0.11 cd | 3.28 ± 0.64 b | |
R0 | 13.17 ± 1.45 c | 10.85 ± 0.87 h | 1.30 ± 0.16 d | 2.48 ± 0.37 cd | |
NT | R100 | 8.24 ± 0.63 d | 21.83 ± 1.67 a | 1.90 ± 0.21 a | 4.06 ± 1.11 a |
R75 | 8.02 ± 0.7 d | 19.81 ± 2.25 b | 1.84 ± 0.21 a | 3.65 ± 1.04 ab | |
R50 | 7.57 ± 0.46 d | 17.67 ± 2.56 c | 1.82 ± 0.2 a | 2.57 ± 0.6 cd | |
R25 | 7.42 ± 0.52 d | 16.29 ± 2.46 cd | 1.65 ± 0.1 b | 2.50 ± 0.59 cd | |
R0 | 7.35 ± 0.74 d | 14.2 ± 1.76 ef | 1.48 ± 0.1 c | 2.22 ± 0.65 d |
Treatments | MWDw | WSA | MWDd | DSA | Aw | |
---|---|---|---|---|---|---|
Residue rate | R100 | † 1.55 ± 0.11 a | 62.56 ± 3.66 a | 1.67 ± 0.15 a | 60.94 ± 4.12 a | 20.95 ± 0.97 a |
R75 | 1.55 ± 0.13 a | 55.91 ± 3.99 b | 1.58 ± 0.12 a | 56.54 ± 3.87 b | 19.27 ± 1.10 b | |
R50 | 1.37 ± 0.11 b | 55.06 ± 6.12 b | 1.64 ± 0.10 a | 60.56 ± 3.48 a | 18.27 ± 1.30 b | |
R25 | 1.26 ± 0.09 c | 47.48 ± 5.32 c | 1.43 ± 0.04 b | 51.00 ± 2.11 c | 16.97 ± 1.61 c | |
R0 | 1.20 ± 0.08 c | 46.61 ± 5.63 c | 1.36 ± 0.08 b | 45.20 ± 4.07 d | 14.87 ± 1.63 d | |
Soil depth | 0 – 10 | 1.39 ± 0.20 a | 56.42 ± 5.6 a | 1.59 ± 0.17 a | 55.25 ± 7.74 a | 18.33 ± 2.25 a |
10 – 20 | 1.38 ± 0.16 a | 50.63 ± 8.43 b | 1.48 ± 0.13 b | 54.44 ± 6.30 a | 17.80 ± 2.67 a |
Treatments | MWDw | WSA | MWDd | DSA | Aw | |
---|---|---|---|---|---|---|
Residue rate | R100 | † 1.59 ± 0.21 a | 66.17 ± 13.3 a | 1.75 ± 0.33 a | 73.41 ± 10.43 a | 26.96 ± 2.69 a |
R75 | 1.52 ± 0.18 ab | 64.72 ± 13.47 a | 1.73 ± 0.11 a | 72.29 ± 8.62 a | 24.29 ± 1.30 b | |
R50 | 1.53 ± 0.13 ab | 60.85 ± 10.34 a | 1.67 ± 0.13 a | 67.52 ± 7.57 ab | 22.37 ± 0.82 c | |
R25 | 1.45 ± 0.18 bc | 54.72 ± 6.26 b | 1.58 ± 0.10 ab | 61.48 ± 5.15 b | 20.72 ± 1.64 d | |
R0 | 1.33 ± 0.13 c | 48.34 ± 5.36 c | 1.47 ± 0.09 b | 51.01 ± 5.40 c | 17.73 ± 2.27 e | |
Soil depth | 0 – 10 | 1.61 ± 0.15 a | 67.03 ± 11.47 a | 1.72 ± 0.17 a | 69.01 ± 12.3 a | 22.93 ± 3.72 a |
10 – 20 | 1.36 ± 0.12 b | 50.89 ± 4.63 b | 1.56 ± 0.19 b | 61.28 ± 8.29 b | 21.90 ± 3.55 b |
Tillage | Residue Rate | MWDw | WSA | MWDd | DSA | Aw |
---|---|---|---|---|---|---|
CT | R100 | † 1.55 ± 0.1 ab | 62.564 ± 3.42 bc | 1.67 ± 0.14 ab | 60.93 ± 3.86 cd | 20.95 ± 0.9 cd |
R75 | 1.54 ± 0.11 ab | 55.91 ± 3.73 d | 1.57 ± 0.11 bc | 56.53 ± 3.62 d | 19.27 ± 1.03 de | |
R50 | 1.36 ± 0.1 cd | 55.06 ± 5.72 d | 1.64 ± 0.09 ab | 60.56 ± 3.25 cd | 18.27 ± 1.21 ef | |
R25 | 1.26 ± 0.08 de | 47.48 ± 4.97 e | 1.42 ± 0.03 d | 50.99 ± 1.97 e | 16.96 ± 1.5 f | |
R0 | 1.12 ± 0.07 e | 46.61 ± 5.26 e | 1.36 ± 0.07 d | 45.19 ± 3.8 f | 14.86 ± 1.52 g | |
NT | R100 | 1.59 ± 0.19 a | 66.17 ± 12.56 a | 1.74 ± 0.3 a | 73.41 ± 9.76 a | 26.95 ± 2.51 a |
R75 | 1.52 ± 0.16 ab | 64.71 ± 12.59 ab | 1.72 ± 0.1 a | 72.28 ± 8.06 ab | 24.29 ± 1.22 b | |
R50 | 1.52 ± 0.11 ab | 60.85 ± 9.67 c | 1.67 ± 0.12 ab | 67.51 ± 7.08 b | 22.36 ± 0.76 bc | |
R25 | 1.44 ± 0.17 bc | 54.71 ± 5.85 d | 1.58 ± 0.08 bc | 61.47 ± 4.82 c | 20.71 ± 1.53 cd | |
R0 | 1.32 ± 0.12 cd | 48.34 ± 5.01 e | 1.46 ± 0.08 cd | 51.01 ± 5.05 e | 17.72 ± 2.11 ef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaei, M.; Gorji Anari, M.; Razavy-Toosi, E.; Asadi, H.; Moghiseh, E.; Saronjic, N.; Rodrigo-Comino, J. Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy 2021, 11, 302. https://doi.org/10.3390/agronomy11020302
Mirzaei M, Gorji Anari M, Razavy-Toosi E, Asadi H, Moghiseh E, Saronjic N, Rodrigo-Comino J. Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy. 2021; 11(2):302. https://doi.org/10.3390/agronomy11020302
Chicago/Turabian StyleMirzaei, Morad, Manouchehr Gorji Anari, Ehsan Razavy-Toosi, Hossein Asadi, Ebrahim Moghiseh, Nermina Saronjic, and Jesús Rodrigo-Comino. 2021. "Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems" Agronomy 11, no. 2: 302. https://doi.org/10.3390/agronomy11020302
APA StyleMirzaei, M., Gorji Anari, M., Razavy-Toosi, E., Asadi, H., Moghiseh, E., Saronjic, N., & Rodrigo-Comino, J. (2021). Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy, 11(2), 302. https://doi.org/10.3390/agronomy11020302