Effects of Management and Hillside Position on Soil Organic Carbon Stratification in Mediterranean Centenary Olive Grove
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area and Experimental Design
2.2. Soil Sampling and Analytical Methods
2.3. Statistical Analyses
3. Results and Discussion
3.1. General Properties of the Studied Soil
3.2. Soil Depth Conceptualization: Soil Profile Is Required when SR Is Used as a Soil Quality Indicator in OG
3.3. Stratification Ratio of SOC and N at the Beginning of the Research (January 2003)
3.4. Management Effects on SR-SOC for Medium‒Long-Term and Short-Term
3.4.1. Medium-Term SR-SOC in Conventional Tillage (from 2003-SR-CT0 to 2017-SR-CT1)
3.4.2. Short-Term SR-SOC in Conventional Tillage (2017-SR-CT1 to 2019-SR-CT2)
3.4.3. Land Management Change Effect (CT to NT-CC) in the Short-Term (2017–2019) on SR-SOC
3.4.4. Land Management Change Effects (from CT0 to NT) on SR-SOC for the Medium to Long Term (2003–2019)
3.5. Influence of Topographic Position in Land Management Change (from CT1 to NT-CC) on SR-SOC for the Short Term (2017–2019)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations; Intergovernmental Technical Panel on Soils. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Dumanski, J.; Peiretti, R. Modern concepts of soil conservation. Int. Soil Water Conserv. Res. 2013, 1, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Young, I.M.; Crawford, J.W. Interaction and self-organization on the soil–microbe complex. Science 2004, 304, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Roger-Estrade, J.; Anger, C.; Bertrand, M.; Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soils Tillage Res. 2010, 111, 33–40. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. 2008, B363, 685–701. [Google Scholar] [CrossRef] [Green Version]
- Brussaard, L. Ecosystem Services Provided by the Soil Biota. In Soil Ecology and Ecosystem Services, 1st ed.; Wall, D.H., Bardgett, R.D., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 45–58. ISBN 9780199575923. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Doran, W.J.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Wander, M.M.; Cihacek, L.J.; Coyne, M.; Drijber, R.A.; Grossman, J.M.; Gutknecht, J.L.M.; Horwath, W.R.; Jagadamma, S.; Olk, D.C.; Ruark, M.; et al. Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management. Front. Environ. Sci. 2019, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Rice, C.W. Soil degradation: Will humankind ever learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Lal, R. Soil Organic Carbon—An Appropriate Indicator to Monitor Trends of Land and Soil Degradation within the SDG Framework? Rural Development, Agriculture and International Soil Protection; Starke, S.M., Ehlers, K., Eds.; Germany Environment Agency, 2016; Available online: http://www.umweltbundesamt.de/publikationen (accessed on 15 December 2020).
- Stolte, J.; Tesfai, M.; Øygarden, L.; Kværnø, S.; Keizer, J.; Verheijen, F.; Panagos, P.; Ballabio, C.; Hessel, R. Soil Threats in Europe; Publications Office: Luxembourg, 2016. [Google Scholar]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A review of the impacts of degradation threats on soil properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmore, A.; Whalley, R.; McGrath, S. Investigating the Impacts of Soil Degradation Processes on Soil Functions—A Scoping Study. In Sub-Project B of Defra Project SP1601: Soil Functions, Quality and Degradation—Studies in Support of the Implementation of Soil Policy; Department for Environment, Food and Rural Affairs: London, UK, 2010. [Google Scholar]
- Xu, M.; Wang, Z.; Zhao, Y. Stratification ratio of soil organic carbon as an indicator of carbon sequestration and soil quality in ecological restoration. Restor. Ecol. 2018, 555–562. [Google Scholar] [CrossRef]
- Federica, L.; Gabriele, B.; Gaetano, R.; Malafronte, A. Spatial modelling and uncertainty assessment of pyroclastic cover thickness in the Sorrento Peninsula. Environ. Earth Sci. 2014, 72, 3353–3367. [Google Scholar] [CrossRef]
- González-Rosado, M.; Lozano-García, B.; Aguilera-Huertas, J.; Parras-Alcántara, L. Short-term effects of land management change linked to cover crop on soil organic carbon in Mediterranean olive grove hillsides. Sci. Total Environ. 2020, 744, 140683. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Barré, P.; Angers, D.A.; Basile-Doelsch, I.; Bispo, A.; Cécillon, L.; Chenu, C.; Chevallier, T.; Derrien, D.; Eglin, T.K.; Pellerin, S. Ideas and perspectives: Can we use the soil carbon saturation deficit to quantitatively assess the soil carbon storage potential, or should we explore other strategies? Biogeosci. Discuss. 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Hernanz, J.L.; Sanchez-Giron, V.; Navarrete, L. Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric. Ecosyst. Environ. 2009, 133, 114–122. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations—FAOSTAT Database; FAOSTAT: Rome, Italy, 2020. [Google Scholar]
- Parras-Alcántara, L.; Díaz-Jaimes, L.; Lozano-García, B. Organic farming affects C and N in soils under olive groves in mediterranean areas. Land Degrad. Dev. 2015, 26–28, 800–806. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Castro-Filho, C.; Henklain, J.C.; Vieira, M.J.; Casão, J.R. Tillage methods and soil and water conservation in southern Brazil. Soil Tillage Res. 1991, 20, 271–283. [Google Scholar] [CrossRef]
- Iovino, M.; Castellini, M.; Bagarello, V.; Giordano, G. Using static and dynamic indicators to evaluate soil physical quality in a Sicilian area. Land Degrad. Dev. 2016, 27, 200–210. [Google Scholar] [CrossRef]
- Lal, R. Tillage effects on soil degradation, soil resilience, soil quality, and sustainability. Soil Tillage Res. 1993, 27, 1–8. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Fox, C.A.; Tan, C.S.; Zhang, T.Q. Land management effects on the near surface physical quality of a clay loam soil. Soil Tillage Res. 2007, 96, 316–330. [Google Scholar] [CrossRef]
- Trigo, C.; Celis, R.; Hermosín, M.C.; Cornejo, J. Organoclay-based formulations to reduce the environmental impact of the herbicide diuron in olive groves. Soil Sci. Soc. Am. J. 2009, 73, 1652–1657. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, R.; Ochoa, M.V.; Hinojosa, M.B.; Gómez-Muñoz, B. Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agron. Sustain. Dev. 2012, 32, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Lavee, H.; Romero-Díaz, A.; Hooke, J.; Montanarella, L. Soil erosion and degradation on Mediterranean type ecosystems. Land Degrad. Dev. 2010, 21, 71–74. [Google Scholar] [CrossRef]
- Conforti, M.; Lucà, F.; Scarciglia, F.; Matteucci, G.; Buttafuoco, G. Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 2016, 144, 23–33. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth 2015, 5, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Romero, M.L.; Parras-Alcántara, L.; Lozano-García, B.; Clark, J.M.; Collins, C.D. Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena 2016, 137, 449–458. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; McBratney, A.B.; de Moraes, J.C.; Schneider, J.; Zinn, Y.L.; et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73–76, 145A–152A. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.P.; Madritch, M.D.; Swanson, A.K. The effects of topography on forest soil characteristics in the Oregon Cascademountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manag. 2009, 257, 1–7. [Google Scholar] [CrossRef]
- Bochet, E. The fate of seeds in the soil: A review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems. Soil 2015, 1, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard. Sustainability 2020, 12, 3256. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.A.; Sobrinho, T.A.; Giráldez, J.V.; Fereres, E. Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Keesstra, S.; Cerdà, A.; Brevik, E.C. Long term effects of soil management on ecosystem services and soil loss estimation in olive grove top-soils. Sci. Total Environ. 2016, 571, 498–506. [Google Scholar] [CrossRef]
- Marchamalo, M.; Hooke, J.M.; Sandercock, P.J. Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degrad. Dev. 2016, 27, 1032–1044. [Google Scholar] [CrossRef]
- Gómez, J.A.; Campos, M.; Guzmán, G.; Castillo-Llanque, F.; Vanwalleghem, T.; Lora, Á.; Giráldez, J.V. Soil erosion control, plant diversity, and arthropod communities under heterogeneous cover crops in an olive orchard. Environ. Sci. Pollut. Res. 2018, 25, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Castro, J.; Humanes, M.D.; Muñoz, J. Sistemas de manejo del suelo en olivar de Andalucía. Edafología 2001, 8, 75–98. [Google Scholar]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of cover crops on the soil microbiome of tree crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- De la Rosa, D.; Moreira, J.M. Evaluación Agroecológica de Recursos Naturales de Andalucía; Agencia de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 1987. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- AEMET—Agencia Estatal de Meteorología, 541 2020. Standard Climate Values—Period: 1983–2010. Available online: http://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=5270B&k=and (accessed on 16 March 2020).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Benítez, C.; Lozano-García, B. Effects of land management change on soil aggregates and organic carbon in Mediterranean olive groves. Catena 2020, 195. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. Forest Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B.; Brevik, E.C.; Cerdà, A. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. J. Environ. Manag. 2015, 155, 219–228. [Google Scholar] [CrossRef]
- Francaviglia, R.; Renzi, G.; Doro, L.; Parras-Alcántara, L.; Lozano-García, B.; Ledda, L. Soil sampling approaches in Mediterranean agro-ecosystems. Influence on soil organic carbon stocks. Catena 2017, 158, 113–120. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Lóczy, D.; Thiele-Bruhn, S.; Zornoza, R. Handbook of Plant and Soil Analysis for Agricultural Systems; Crai UPTC Editions: Cartagena, Spain, 2019; 389p. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, Ed.; ASA, SSSA: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- USDA. Soil Survey Laboratory Methods Manual, Soil Survey Investigation Report No. 42; Version 4.0; USDA-NCRS: Lincoln, NE, USA, 2004. [Google Scholar]
- Guitián, F.; Carballas, T. Técnicas de Análisis de Suelos; Picro Sacro: Santiago de Compostela, Spain, 1976. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Monograph; Page, A.L., Miller, R.H., Keeney, D., Eds.; ASA and SSSA: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series No 5; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1086. [Google Scholar]
- Stolbovoy, V.; Montanarella, L.; Filippi, N.; Jones, A.; Gallego, J.; Grassi, G. Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock in Mineral Soil of the European Union; Version 2. EUR 21576 EN/2. 56; Office for Official Publications of the European Communities: Luxembourg, 2007; ISBN 978-92-79-05379. [Google Scholar]
- Intergovernmental Panel on Climate Change. Good Practice Guidance for Land Use, Land Use Change and Forestry; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; IPCC/OECD/IEA/IGES: Hayama, Japan, 2003. [Google Scholar]
- Aguilera-Huertas, J. Efecto del Laboreo y la Posición Topográfica en la Calidad del Suelo. Master’s Thesis, Instituto de Estudios de Postgrado; Máster en Gestión Ambiental y Biodiversidad, Universidad de Córdoba, Cordoba, Spain, 2020. [Google Scholar]
- Alcaide, R. Estudio de Suelos Sobre Olitostromas en la Campiña de Torredelcampo, Jaén. Bachelor’s Thesis, Universidad de Córdoba, Córdoba, Spain, 2013. [Google Scholar]
- Symith, A.J.; Montgomery, R.F. Soil and Land Use in Central Western Nigeria; The Government of Western Nigeria: Ibadan, Nigeria, 1962.
- Fernández-Romero, M.L.; Lozano-García, B.; Parras-Alcántara, L. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas. Agric. Ecosyst. Environ. 2014, 195, 1–9. [Google Scholar] [CrossRef]
- Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 2001, 52, 59–68. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wu, W.; Liu, H. Factors affecting variations of soil pH in different horizons in hilly regions. PLoS ONE 2019, 14, e0218563. [Google Scholar] [CrossRef]
- Gallardo, A.; Rodríguez-Saucedo, J.; Covelo, F.; Fernández-Ales, R. Soil Nitrogen heterogeneity in dehesa ecosystem. Plant Soil 2000, 222, 71–82. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Di Tizio, A.; Marinari, S.; Grego, S. Microbial indicators related to soil carbon in Mediterranean land use systems. Soil Tillage Res. 2007, 97, 51–59. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 2014, 65, 10–25. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Murillo, J.C. Organic carbon content under different types of land use and soil in peninsular Spain. Biol. Fert. Soils 2001, 33, 53–61. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Jordán, A.; Zavala, L.M.; De la Rosa, D.; Abd-Elmabod, S.K.; Anaya-Romero, M. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 2012, 3, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Castro, J.; Fernández-Ondono, E.; Rodríguez, C.; Lallena, A.M.; Sierra, M.; Aguilar, J. Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaen (Spain). Soil Tillage Res. 2008, 98, 56–67. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Easter, M.; Cantero-Martínez, C.; Paustian, K. Modelling soil organic carbon stocks and their changes in the northeast of Spain. Eur. J. Soil Sci. 2011, 62, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.A.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.J.; Grau, J.M.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Long-term evaluation of the initiative 4‰ under different soil managements in Mediterranean olive groves. Sci. Total Environ. 2020, 143591. [Google Scholar] [CrossRef]
- Fernández-Romero, M.L.; Lozano-García, B.; Parras-Alcántara, L.; Collins, C.D.; Clark, J.M. Effects of land management on different forms of soil carbon in olive groves in Mediterranean areas. Land Degrad. Dev. 2016, 27, 1186–1195. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.M. The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena 2015, 125, 33–37. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R. On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil Tillage Res. 2009, 104, 270–277. [Google Scholar] [CrossRef]
- Masmoudi-Charfi, C.; Masmoudi, M.; Ben Mechlia, N. Root distribution in young Chétoui olive trees (Olea europaea L.) and agronomic applications. Adv. Hortic. Sci. 2011, 25, 112–122. [Google Scholar] [CrossRef]
- VandenBygaart, A.J. Monitoring soil organic carbon stock changes in agricultural landscapes: Issues and a proposed approach. Can. J. Soil Sci. 2006, 86, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Sombrero, A.; De Benito, A. Carbon accumulation in soil. Ten year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil Tillage Res. 2010, 107, 64–70. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. The depth distribution of organic soil carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv. Agron. 2005, 88, 35–66. [Google Scholar] [CrossRef]
- Grüneberg, E.; Schöning, I.; Kalko, E.K.V.; Weisser, W.W. Regional organic carbon stock variability: A comparison between depth increments and soil horizons. Geoderma 2010, 155, 426–433. [Google Scholar] [CrossRef]
- SSSA. Soil Science Society of America 2008. Glossary of Soil Science Terms; SSSA: Madison, WI, USA, 2016; Available online: http://blogs.upm.es/techenglish/wp-content/uploads/sites/53/2015/05/Soil-Science-glossary.pdf (accessed on 1 September 2020).
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Kögel-Knabner, I.; Leuschner, C.; Rethemeyer, J.; Mueller, C.W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Short-term effects of olive mill by-products on soil organic carbon, total N, C:N ratio and stratification ratios in a Mediterranean olive grove. Agric. Ecosyst. Environ. 2013, 165, 68–73. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for c-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.T.; Plante, A.F.; Six, J. Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry 2007, 86, 19–31. [Google Scholar] [CrossRef]
- Dignac, M.F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J. The capacity of soils to preserve organic c and n by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2018, 188, 41–52. [Google Scholar] [CrossRef]
- Moreno, F.; Murillo, J.M.; Pelegrín, F.; Girón, I.F. Long term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Tillage Res. 2006, 85, 86–93. [Google Scholar] [CrossRef]
- Côté, L.; Brown, S.; Paré, D.; Fyles, J.; Bauhus, J. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Biol. Biochem. 2000, 32, 1079–1090. [Google Scholar] [CrossRef]
- Rodríguez-Lizana, A.; Espejo-Pérez, A.J.; González-Fernández, P.; Ordóñez-Fernández, R. Pruning residues as an alternative to traditional tillage to reduce erosion and pollutant dispersion in olive groves. Water Air Soil Pollut. 2008, 193, 165–173. [Google Scholar] [CrossRef]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Greer, K.J.; Anderson, D.W.; Liang, B.C. Carbon distribution and losses: Erosion and deposition effects. Soil Tillage Res. 1998, 47, 291–302. [Google Scholar] [CrossRef]
- Gmach, M.R.; Dias, B.O.; Silva, C.A.; Nóbrega, J.C.A.; Lustosa-Filho, J.F.; Siqueira-Neto, M. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Region. 2018, 14, e00178. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Amado, T.J.C.; Sá Nicoloso, R.D.; Fiorin, J.C.D.; Hansel, J.E. Soil carbon stratification affected by long-term tillage and cropping systems in southern Brazil. Soil Tillage Res. 2013, 133, 65–74. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Resck, D.V.S.; Carneiro, M.A.C.; Ramos, M.L.G.; Sá, J.C.M. Stratification ratio of organic matter pools influenced by management systems in a weathered Oxisol from a tropical agro-ecoregion in Brazil. Soil Res. 2013, 51, 133–141. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 2, 2099–2103. [Google Scholar] [CrossRef]
- Wright, S.F.; Green, V.S.; Cavigelli, M.A. Glomalin in aggregate size classes from three different farming systems. Soil Tillage Res. 2007, 94, 546–549. [Google Scholar] [CrossRef]
- Yoo, G.; Wander, M.M. Tillage Effects on Aggregate Turnover and Sequestration of Particulate and Humified Soil Organic Carbon. Soil Sci. Soc. Am. J. 2008, 72, 670–676. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 104, 423–436. [Google Scholar] [CrossRef]
- Barbera, V.; Poma, I.; Gristina, L.; Novara, A.; Egli, M. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of C sequestration rates in a semiarid environment. Land Degrad. Dev. 2012, 23, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- García-Orenes, F.; Cerdà, A.; Mataix-Solera, J.; Guerrero, C.; Bodí, M.B.; Arcenegui, V.; Zornoza, R.; Sempere, J.G. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil Tillage Res. 2009, 106, 117–123. [Google Scholar] [CrossRef]
- Wallace, A. Soil organic matter must be restored to near original levels. Commun. Soil Sci. Plant Anal. 1994, 25, 29–35. [Google Scholar] [CrossRef]
- Shrestha, B.M.; Sitaula, B.K.; Singh, B.R.; Bajracharya, R.M. Soil organic carbon stocks in soil aggregates under different land use systems in Nepal. Nutr. Cycl. Agroecosys. 2004, 70, 201–213. [Google Scholar] [CrossRef]
- Sá, J.C.M.; Lal, R. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 2009, 103, 46–56. [Google Scholar] [CrossRef]
- Noellemeyer, E.; Quiroga, A.R.; Estelrich, D. Soil quality in three range soils of the semi-arid Pampa of Argentina. J. Arid Environ. 2006, 65, 142–155. [Google Scholar] [CrossRef]
- Novara, A.; Rülh, J.; La Mantia, J.; Gristina, L.; La Bella, S.; Tuttolomondo, T. Litter contribution to soil organic carbon in the process of agriculture abandon. Solid Earth 2015, 6, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Saygin, S.D.; Erpul, G.; Basaran, M. Comparison of aggregate stability measurement methods for clay-rich soils in Asartepe catchment of Turkey. Land Degrad. Dev. 2015, 28, 199–206. [Google Scholar] [CrossRef]
- Aranda, V.; Calero, J.; Plaza, I.; Ontiveros-Ortega, A. Long-term effects of olive mill pomace co-compost on wettability and soil quality in olive groves. Geoderma 2016, 267, 185–195. [Google Scholar] [CrossRef]
- López-Piñeiro, A.; Albarrán, A.; Rato, J.M.; Peña, D.; Cabrera, D. Long-term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Tillage Res. 2011, 114, 175–182. [Google Scholar] [CrossRef]
- Gámiz, B.; Celis, R.; Cox, L.; Hermosín, M.C.; Cornejo, J. Effect of olive-mill waste addition to soil on sorption, persistence, and mobility of herbicides used in Mediterranean olive groves. Sci. Total Environ. 2012, 429, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Moure, N.; Gracia, R.; Bielsa, A.C.; López, M.V. Long-term no-tillage effects on particulate and mineral-associated soil organic matter under rainfed Mediterranean conditions. Soil Use Manag. 2013, 29, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Diekow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kögel-Knabner, I. Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil acrisol managed under no-tillage for 17 years. Soil Tillage Res. 2005, 81, 87–95. [Google Scholar] [CrossRef]
- Gollany, H.T.; Elnaggar, A.A. Simulating soil organic carbon changes across toposequences under dryland agriculture using CQESTR. Ecol. Model. 2017, 355, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Mrabet, R.; Saber, N.; El-Brahli, A.; Lahlou, S.; Bessam, F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil Tillage Res. 2001, 57, 225–235. [Google Scholar] [CrossRef]
- López-Fando, C.; Almendros, G. Interactive effects of tillage and crop rotations on yield and chemical properties of soils in semi-arid central Spain. Soil Tillage Res. 1995, 36, 45–57. [Google Scholar] [CrossRef]
- Fleskens, L.; Stroosnijder, L. Is soil erosion in olive groves as bad as often claimed? Geoderma 2007, 141, 3–4. [Google Scholar] [CrossRef]
- Gómez, J.A.; Giráldez, J.V.; Vanwalleghem, T. Comment on “Is soil erosion in olive groves as bad as often claimed?” by L. Fleskens and L. Stroosnijder. Geoderma 2008, 147, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Soil organic carbon sequestration and agricultural greenhouse gas emissions in the southeastern USA. Soil Tillage Res. 2005, 83, 120–147. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.; Enrique, A.; Hoogmoed, W.; Bescansa, P. Burning crop residues under no-till in semi-arid land, northern Spain-effects on soil organic matter, aggregation, and earthworm populations. Aust. J. Soil Res. 2007, 45, 414–421. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.; Cantero-Martínez, C.; Arrúe, J. Tillage effects on soil organic carbon fractions in Mediterranean Dryland Agroecosystems. Soil Water Manag. Conserv. 2008, 72, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Scowcroft, P.G.; Turner, D.R.; Vitousek, P.M. Decomposition of Metrosideros polymorpha leaf litter along elevational gradients in Hawaii. Glob. Chang. Biol. 2000, 6, 73–85. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; López, J.; Almagro, M.; Boix-Fayos, C.; Albadalejo, J. Effect of water erosion and cultivation on the soil carbon stock in a semiarid area of South-East Spain. Soil Tillage Res. 2008, 99, 119–129. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliot, E.T.; Hunt, H.Q. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- González, I.; Grau, J.M.; Fernández, A.; Jiménez, R.; González, M.R. Soil carbon stocks and soil solution chemistry in Quercus ilex stands in Mainland Spain. Eur. J. For. Res. 2012, 131, 1653–1667. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional Mediterranean olive grove. Land Degrad. Dev. 2014, 25, 297–304. [Google Scholar] [CrossRef]
- Jégou, D.; Cluzeau, D.; Hallaire, V.; Balesdent, J.; Tréhen, P. Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil. Eur. J. Soil Biol. 2000, 36, 27–34. [Google Scholar] [CrossRef]
- Del Galdo, I.; Six, J.; Peressotti, A.; Cotrufo, M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob. Chang. Biol. 2003, 9, 1204–1213. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Location | Torredelcampo—Jaén, South of Spain |
Coordinate | 37°50′20″ N—3°52′32″ W |
Altitude | Average (541 m.a.s.l)—(from 530 m.a.s.l to 593 m.a.s.l) |
Slope | <8% |
Epoch and lithology a | Miocene loam and marlaceous lime |
Morphogenesis b | Denudative—formed by hills |
Hydrology b | Dendritic network of carbonate facies b |
Climatic classification c | Mediterranean—Csa |
Climatic characteristics d | Average annual rainfall: 493.2 mm Average annual temperature: 17.1 °C—(maximum: 46.2 °C (August); minimum: −7.8 °C (January)) Relative humidity: 59%—insolation: 237 h month−1—wind speed: 6 km h−1—humidity index: 0.50 Rain erosivity: highly variable (from 2.1 to 75)—5 months with frost risk |
Soil type e | Calcaric Cambisols—Cmca |
Principal soil properties f | Deep soils: 123.8–128.7 cm—texture: clayey soils—basic pH (>7)—low SOM content |
Principal soil characteristics g | Low fertility—poor physical conditions—low capacity for agricultural use |
Period | Management | Duration | Management Description |
---|---|---|---|
1900–2003 | CT a | 1900–1950 | Systems using animal power (plow with mules) with lightweight reversible plows; nonmineral fertilization or pesticides. |
1950–2003 | Annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer (tractor services for land preparation). Mineral fertilization was applied (100 kg ha−1—urea, 46% N). | ||
2003–2019 | Farm is divided into two parts: first LMC (CT0 and NT0) | 2003 (January) CT0 to 2019 (September) CT2 and NT0 | CT0 and CT2—conventional tillage (heavily tilled). After the olive harvest, 180 kg ha−1 of mineral fertilizer (urea, 46% N) is applied in alternate years. Afterward, the olive trees are pruned, the pruning remains are crushed and added to the street among the olive trees (6 Mg ha−1), and fungicides are applied (Copper oxychloride 34.5% w.p.). After an annual pass with a disk harrow (25 cm) and cultivator in the spring, a tine harrow is used in the summer to decrease the size of the clods. Finally, a broad-spectrum herbicide is used in the autumn to control weeds under the trees and allow the harvest of the olives. |
NT0—no tillage/reduced tillage. No tillage implies the same application of pruning residues, fertilizers, fungicides, and herbicides, but NT was managed without tractor use. | |||
2017–2019 | Second LMC: the farm with CT0 is divided into two parts (CT1 and NT-CC) | 2017 (September) to 2019 (September) | CT1 is similar to CT0 |
NT-CC—no tillage/reduced tillage (is similar to NT0) with cover crops. |
Parameters | Method |
---|---|
Field measurements | |
Bulk density (Mg m−3) | Core method [60] a |
Laboratory analysis | |
Particle size distribution | Robinson pipette method [61] b |
pH—H2O | Suspension in water 1:2.5 [62] |
Organic C (g kg−1) | Walkley and Black method [63] |
Total N (g kg−1) | Kjeldahl method [64] |
Parameters calculated from analytical data | |
SOC-S (Mg ha−1) | SOC-S = SOC concentration × BD × d × (1 − δ2mm%) × 10−1 [65,66] c |
T-SOC-S (Mg ha−1) | T-SOC-S = Σ soil horizon 1…n SOC-S soil horizons [66] d |
SR | SRs (SR1(S1/S2), SR2 (S1/S3) and SR3 (S1/S4)) [23] e |
Hor | Depth (cm) | TH (cm) | Gravel (%) | Texture (USDA) | Sand (%) | Coarse Silts (%) | Fine Silts (%) | Clay (%) | BD (Mg m−3) | Ph (H2O) | OM (%) | SOC (g kg−1) | SOC-S (Mg ha−1) | TN (g kg−1) | TN-S (Mg ha−1) | C:N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ap | 0–19.3 | 19.3 ± 2.1 | 12.8 ± 1.7 a | SCL | 8.7 ± 0.6 a | 7.3 ± 1.5 a | 52.5 ± 2.4 a | 31.5 ± 0.9 a | 1.41 ± 0.03 a | 7.7 ± 0.1 a | 1.22 ± 0.06 a | 6.44 ± 0.30 a | 15.3 ± 0.6 a | 0.93 ± 0.15 a | 2.21 ± 0.33 a | 7.0 ± 0.8 a |
Bw | 19.3–56.0 | 36.7 ± 7.6 | 13.6 ± 1.6 a | SCL | 5.5 ± 1.6 b | 9.2 ± 1.4 a | 53.7 ± 1.9 a | 31.6 ± 0.6 a | 1.42 ± 0.02 a | 8.0 ± 0.1 a | 1.01 ± 0.05 a | 5.32 ± 0.18 a | 23.9 ± 0.8 b | 0.93 ± 0.05 a | 4.19 ± 0.27 b | 5.7 ± 0.5 b |
Bw/C | 56.0–89.0 | 33.0 ± 10.8 | 17.7 ± 1.2 b | SCL | 1.8 ± 0.8 c | 11.0 ± 1.7 b | 53.9 ± 1.8 a | 33.3 ± 1.9 a | 1.43 ± 0.03 a | 8.1 ± 0.1 a | 0.76 ± 0.04 b | 4.08 ± 0.19 b | 15.5 ± 0.7 a | 0.87 ± 0.05 a | 3.36 ± 0.25 b | 4.6 ± 0.2 b |
C | 89.0–115.7 | 26.7 ± 12.6 | 12.6 ± 0.6 a | SCL | 4.1 ± 0.9 b | 14.0 ± 1.6 c | 52.9 ± 1.6 a | 29.0 ± 0.8 a | 1.44 ± 0.02 a | 8.1 ± 0.1 a | 0.71 ± 0.02 b | 3.72 ± 0.11 b | 12.5 ± 0.4 a | 0.77 ± 0.05 b | 2.58 ± 0.21 a | 4.9 ± 0.4 b |
Sampling | SR | Horizon Ratio | SR-SOC | SR-TN |
---|---|---|---|---|
January 2003 | SR1-CT0 | Ap/Bw | 1.21 ± 0.24 Aa | 1.01 ± 0.10 Aa |
SR2-CT0 | Ap/Bw-C | 1.58 ± 0.23 Ba | 1.07 ± 0.11 Aa | |
SR3-CT0 | Ap/C | 1.73 ± 0.21 Ba | 1.21 ± 0.10 Ba | |
September 2017 | SR1-CT1 | Ap/Bw | 1.48 ± 0.11 Ab | 1.31 ± 0.26 Ab |
SR2-CT1 | Ap/Bw-C | 2.29 ± 0.13 Bb | 1.97 ± 0.24 Bb | |
SR3-CT1 | Ap/C | 3.01 ± 0.11 Cb | 2.03 ± 0.23 Cb | |
September 2019 | SR1-CT2 | Ap/Bw | 1.15 ± 0.34 Aa | 1.22 ± 0.45 Aa |
SR2-CT2 | Ap/Bw-C | 1.89 ± 0.23 Bc | 1.82 ± 0.38 Bb | |
SR3-CT2 | Ap/C | 2.48 ± 0.26 Cc | 1.88 ± 0.26 Bb | |
September 2019 | SR1-NT-CC | Ap/Bw | 1.22 ± 0.17 Aa | 1.13 ± 0.19 Aa |
SR2-NT-CC | Ap/Bw-C | 1.82 ± 0.19 Bc | 1.45 ± 0.21 Bc | |
SR3-NT-CC | Ap/C | 2.39 ± 0.21 Cc | 1.46 ± 0.18 Bc | |
September 2019 | SR1-NT | Ap/Bw | 0.98 ± 0.17 Ab | 1.69 ± 0.23 Ac |
SR2-NT | Ap/Bw-C | 4.10 ± 1.43 Bd | 1.71 ± 0.31 Ab | |
SR3-NT | Ap/C | 4.16 ± 1.65 Bd | 1.78 ± 0.28 Ab |
Sampling | ||||
---|---|---|---|---|
2017 | 2019 | |||
CT1 | CT2 | NT-CC | ||
Topographic Position | Horizon Ratio | SR-SOC | SR-SOC | SR-SOC |
Toeslope | Ap/Bw | 1.66 ± 0.14 Aa | 1.07 ± 0.10 Ab | 1.13 ± 0.06 Ab |
Ap/Bw-C | 2.86 ± 0.11 Ba | 2.44 ± 0.16 Bb | 1.71 ± 0.11 Bc | |
Ap/C | 2.87 ± 0.13 Ba | 3.20 ± 0.13 Cb | 1.98 ± 0.15 Cc | |
Backslope | Ap/Bw | 2.51 ± 0.09 Aa | 1.26 ± 0.09 Ab | 1.20 ± 0.10 Ab |
Ap/Bw-C | 1.88 ± 0.19 Ba | 1.75 ± 0.18 Ba | 4.05 ± 0.12 Bb | |
Ap/C | 1.87 ± 0.07 Ba | 2.29 ± 0.13 Cb | 4.30 ± 0.14 Cc | |
Summit | Ap/Bw | 1.17 ± 0.12 Aa | 1.16 ± 0.11 Aa | 1.38 ± 0.09 Ab |
Ap/Bw-C | 1.24 ± 0.16 Aa | 1.48 ± 0.13 Bb | 1.22 ± 0.11 Aa | |
Ap/C | 2.03 ± 0.09 Ba | 1.94 ± 0.08 Ca | 1.99 ± 0.13 Ba |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera-Huertas, J.; Lozano-García, B.; González-Rosado, M.; Parras-Alcántara, L. Effects of Management and Hillside Position on Soil Organic Carbon Stratification in Mediterranean Centenary Olive Grove. Agronomy 2021, 11, 650. https://doi.org/10.3390/agronomy11040650
Aguilera-Huertas J, Lozano-García B, González-Rosado M, Parras-Alcántara L. Effects of Management and Hillside Position on Soil Organic Carbon Stratification in Mediterranean Centenary Olive Grove. Agronomy. 2021; 11(4):650. https://doi.org/10.3390/agronomy11040650
Chicago/Turabian StyleAguilera-Huertas, Jesús, Beatriz Lozano-García, Manuel González-Rosado, and Luis Parras-Alcántara. 2021. "Effects of Management and Hillside Position on Soil Organic Carbon Stratification in Mediterranean Centenary Olive Grove" Agronomy 11, no. 4: 650. https://doi.org/10.3390/agronomy11040650