Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemical Composition Analysis
2.2.1. Fatty Acids
2.2.2. Tocopherols
2.2.3. Organic Acids
2.2.4. Free Sugars
2.3. Statistical Analysis
3. Results and Discussion
3.1. Lipidic Fraction and Fatty Acids Composition
3.2. Tocopherols, Organic Acids, and Free Sugars Content
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sonnante, G.; Pignone, D.; Hammer, K. The domestication of artichoke and cardoon: From Roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, H.D.; Toscano, V.; Puglia, G.D.; Genovese, C.; Raccuia, S.A. Cynara cardunculus L. as a Multipurpose Crop for Plant Secondary Metabolites Production in Marginal Stressed Lands. Front. Plant. Sci. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Conceição, C.; Martins, P.; Alvarenga, N.; Dias, J.; Lamy, E.; Garrido, L.; Gomes, S.; Freitas, S.; Belo, A.; Brás, T.; et al. Cynara cardunculus: Use in Cheesemaking and pharmaceutical applications. In Technological Approaches for Novel Applications in Dairy Processing; IntechOpen: London, UK, 2012; pp. 73–107. [Google Scholar]
- Zayed, A.; Serag, A.; Farag, M.A. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J. Funct. Foods 2020, 69, 103937. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crops Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Ierna, A.; Sortino, O.; Mauromicale, G. Biomass, seed and energy yield of Cynara cardunculus L. as affected by environment and season. Agronomy 2020, 10, 1548. [Google Scholar] [CrossRef]
- Docimo, T.; De Stefano, R.; Cappetta, E.; Lisa Piccinelli, A.; Celano, R.; De Palma, M.; Tucci, M. Physiological, biochemical, and metabolic responses to short and prolonged saline stress in two cultivated cardoon genotypes. Plants 2020, 9, 554. [Google Scholar] [CrossRef]
- Gostin, A.I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Barracosa, P.; Barracosa, M.; Pires, E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem. Biodivers. 2019, 16, e1900498. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem. 2011, 126, 417–422. [Google Scholar] [CrossRef]
- Eljounaidi, K.; Comino, C.; Moglia, A.; Cankar, K.; Genre, A.; Hehn, A.; Bourgaud, F.; Beekwilder, J.; Lanteri, S. Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis. Plant. Sci. 2015, 239, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F.; Sorrentino, M.C.; Caporale, A.G.; Fiorentino, N.; Giordano, S.; Spagnuolo, V. Exploring the phytoremediation potential of Cynara cardunculus: A trial on an industrial soil highly contaminated by heavy metals. Environ. Sci. Pollut. Res. 2020, 27, 9075–9084. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.; Simões, I. Cardoon-based rennets for cheese production. Appl. Microbiol. Biotechnol. 2018, 102, 4675–4686. [Google Scholar] [CrossRef]
- Bousios, S.; Worrell, E. Towards a Multiple Input-Multiple Output paper mill: Opportunities for alternative raw materials and sidestream valorisation in the paper and board industry. Resour. Conserv. Recycl. 2017, 125, 218–232. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Piluzza, G.; Molinu, M.G.; Re, G.A.; Sulas, L. Phenolic compounds content and antioxidant capacity in cardoon achenes from different head orders. Nat. Prod. Res. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Gominho, J.; Lourenço, A.; Palma, P.; Lourenço, M.E.; Curt, M.D.; Fernández, J.; Pereira, H. Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Ind. Crops Prod. 2011, 33, 1–6. [Google Scholar] [CrossRef]
- Chihoub, W.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I.C.F.R. Valorisation of the green waste parts from turnip, radish and wild cardoon: Nutritional value, phenolic profile and bioactivity evaluation. Food Res. Int. 2019, 126, 108651. [Google Scholar] [CrossRef] [Green Version]
- Pagano, I.; Piccinelli, A.L.; Celano, R.; Campone, L.; Gazzerro, P.; Falco, E.; Rastrelli, L. Chemical profile and cellular antioxidant activity of artichoke by-products. Food Funct. 2016, 7, 4841–4850. [Google Scholar] [CrossRef]
- D’Antuono, I.; Carola, A.; Sena, L.M.; Linsalata, V.; Cardinali, A.; Logrieco, A.F.; Colucci, M.G.; Apone, F. Artichoke polyphenols produce skin anti-age effects by improving endothelial cell integrity and functionality. Molecules 2018, 23, 2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria-Silva, C.; Ascenso, A.; Costa, A.M.; Marto, J.; Carvalheiro, M.; Ribeiro, H.M.; Simões, S. Feeding the skin: A new trend in food and cosmetics convergence. Trends Food Sci. Technol. 2020, 95, 21–32. [Google Scholar] [CrossRef]
- Curt, M.D.; Sánchez, G.; Fernández, J. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy 2002, 23, 33–46. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Cimminelli, M.J.; Volpe, F.; Ansó, R.; Esparza, I.; Mármol, I.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Phenolic composition of Artichoke waste and its antioxidant capacity on differentiated Caco-2 cells. Nutrients 2019, 11, 1723. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Pereira, C.; Tzortzakis, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front. Plant. Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Barbulova, A.; Colucci, G.; Apone, F. New trends in cosmetics: By-products of plant origin and their potential use as cosmetic active ingredients. Cosmetics 2015, 2, 82–92. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant. Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Mandim, F.; Dias, M.I.; Pinela, J.; Barracosa, P.; Ivanov, M.; Ferreira, I.C.F.R. Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis DC.) seeds as influenced by viability. Food Chem. 2020, 323, 126838. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crops Prod. 2013, 44, 44–49. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Struik, P.C.; Vos, J.; Danalatos, N.G. Phenological growth stages of Cynara cardunculus: Codification and description according to the BBCH scale. Ann. Appl. B 2013, 156, 253–270. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Fernandes, Â.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition of Cynara cardunculus L. var. altilis heads: The impact of harvesting time. Agronomy 2020, 10, 1088. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem. 2018, 267, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. Calluna vulgaris (L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Dias, M.I.; Barros, L.; Morales, P.; Sánchez-Mata, M.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Nutritional parameters of infusions and decoctions obtained from Fragaria vesca L. roots and vegetative parts. LWT Food Sci. Technol. 2015, 62, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil? Ind. Crops Prod. 2018, 124, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem. 2020, 336, 127744. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Dias, M.I.; Fernandes, Â.; Pinela, J.; Kostic, M.; Soković, M.; Barros, L.; Santos-Buelga, C.; et al. Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Res. Int. 2020, 134, 109281. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Georgieva, E.; Karamalakova, Y.; Nikolova, G.; Grigorov, B.; Pavlov, D.; Gadjeva, V.; Zheleva, A. Radical scavenging capacity of seeds and leaves ethanol extracts of Cynara scolymus L.—A comparative study. Biotechnol. Biotechnol. Equip. 2014, 26, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Pereira, C.; Tzortzakis, N.; Vaz, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chem. 2019, 289, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
Total lipidic fraction (g/100 g dw) | ||||||||
4.7 ± 0.1 c | 13.1 ± 0.2 a | 6.1 ± 0.2 b | 4.0 ± 0.1 d | 4.9 ± 0.1 c | 2.9 ± 0.1 e | 2.4 ± 0.2 f | 2.2 ± 0.2 f | |
Fatty acids (relative percentage, %) | ||||||||
C6:0 | 0.20 ± 0.01 g | 0.26 ± 0.02 f | 0.27 ± 0.03 f | 0.488 ± 0.005 e | 0.56 ± 0.01 d | 0.87 ± 0.01 c | 1.12 ± 0.03 b | 2.28 ± 0.04 a |
C8:0 | 0.29 ± 0.03 f | 0.33 ± 0.01 e | 0.29 ± 0.03 f | 0.56 ± 0.03 c | 0.615 ± 0.004 b | 0.78 ± 0.02 a | 0.36 n ± 0.01 d | 0.61 ± 0.02 b |
C10:0 | 0.261 ± 0.002 f | 0.22 ± 0.02 f | 0.7 ± 0.1 c | 0.75 ± 0.06 bc | 0.784 ± 0.001 b | 1.124 ± 0.002 a | 0.52 ± 0.02 e | 0.608 ± 0.001 d |
C11:0 | 1.066 ± 0.001 b | 0.70 ± 0.02 c | 0.60 ± 0.05 d | 0.62 ± 0.02 d | 0.65 ± 0.01 d | 1.04 ± 0.02 b | 1.03 ± 0.05 b | 1.14 ± 0.05 a |
C12:0 | 0.65 ± 0.06 e | 1.911 ± 0.004 b | 2.5 ± 0.3 a | 1.46 ± 0.02 c | 1.057 ± 0.004 d | 1.04 ± 0.02 d | 0.62 ± 0.04 e | 0.330 ± 0.003 f |
C13:0 | 0.095 ± 0.009 a | 0.081 ± 0.001 b | 0.052 ± 0.001 d | 0.092 ± 0.003 a | 0.064 ± 0.001 c | n.d. | n.d. | n.d. |
C14:0 | 1.9 ± 0.1 d | 2.56 ± 0.01 b | 2.8 ± 0.2 a | 2.63 ± 0.01 ab | 2.19 ± 0.02 c | 1.90 ± 0.02 d | 1.8 ± 0.1 de | 1.7 ± 0.1 e |
C14:1 | 0.09 ± 0.01 a | 0.064 ± 0.004 b | 0.041 ± 0.001 c | 0.062 ± 0.004 b | n.d. | n.d. | n.d. | n.d. |
C15:0 | 0.83 ± 0.03 b | 0.70 ± 0.01 d | 0.6 ± 0.1 e | 0.71 ± 0.02 d | 0.866 ± 0.001 b | 1.02 ± 0.01 a | 0.78 ± 0.01 c | 0.74 ± 0.04 cd |
C15:1 | 0.066 ± 0.003 d | 0.062 ± 0.002 d | 0.043 ± 0.001 d | 0.057 ± 0.003 d | 31.01 ± 0.01 b | 31.2 ± 0.2 a | 0.15 ± 0.01 cd | 0.19 ± 0.01 c |
C16:0 | 47.3 ± 0.6 a | 47.2 ± 0.1 a | 44 ± 2 b | 0.95 ± 0.01 e | 0.98 ± 0.02 e | 1.27 ± 0.01 e | 36.7 ± 0.4 d | 41 ± 1 c |
C16:1 | 0.16 ± 0.01 f | 0.257 ± 0.002 e | 0.29 ± 0.03 e | 0.894 ± 0.001 b | 0.79 ± 0.01 c | 1.3 ± 0.1 a | 0.84 ± 0.01 c | 0.49 ± 0.02 e |
C17:0 | 0.83 ± 0.04 c | 0.699 ± 0.001 d | 0.62 ± 0.03 e | 0.57 ± 0.01 f | 0.545 ± 0.004 f | 0.64 ± 0.02 e | 1.18 ± 0.05 b | 1.3 ± 0.1 a |
C18:0 | 6.6 ± 0.1 g | 7.58 ± 0.01 f | 8.7 ± 0.5 e | 44.34 ± 0.1 a | 29.80 ± 0.04 b | 24.57 ± 0.01 c | 8.71 ± 0.03 e | 10.4 ± 0.2 d |
C18:1n9c | 4.2 ± 0.1 h | 6.90 ± 0.01 g | 14.6 ± 0.3 c | 13.0 ± 0.4 d | 8.14 ± 0.01 f | 10.0 ± 0.1 e | 29.0 ± 0.4 a | 19 ± 1 b |
C18:2n6c | 12.59 ± 0.03 b | 16.852 ± 0.001 a | 10.5 ± 0.3 c | 4.96 ± 0.01 d | 2.69 ± 0.03 f | 2.8 ± 0.2 f | 2.3 ± 0.1 g | 3.8 ± 0.2 e |
C18:3n3 | 5.60 ± 0.02 a | 4.15 ± 0.01 b | 2.7 ± 0.3 c | 0.64 ± 0.01 d | 0.354 ± 0.004 e | 0.51 ± 0.02 de | 0.48 ± 0.02 de | 0.35 ± 0.01 e |
C20:0 | 4.3 ± 0.1 a | 2.819 ± 0.004 d | 2.43 ± 0.04 e | 0.12 ± 0.01 g | 0.55 ± 0.02 f | 0.63 ± 0.02 f | 3.32 ± 0.02 c | 3.6 ± 0.2 b |
C20:1 | 0.089 ± 0.002 f | 0.08 ± 0.01 f | 0.52 ± 0.05 d | 0.69 ± 0.01 c | 0.369 ± 0.004 e | 1.06 ± 0.03 a | 1.11 ± 0.05 a | 0.8 ± 0.1 b |
C20:2 | 0.03 ± 0.01 d | 0.17 ± 0.02 c | 0.35 ± 0.03 a | 0.21 ± 0.01 b | n.d. | n.d. | n.d. | n.d. |
C21:0 | 0.853 ± 0.002 a | 0.54 ± 0.03 d | 0.17 ± 0.02 e | 0.13 ± 0.02 e | 0.16 ± 0.01 e | n.d. | 0.67 ± 0.05 c | 0.79 ± 0.03 b |
C20:3n6 | 0.279 ± 0.003 d | 0.16 ± 0.01 e | n.d. | 1.76 ± 0.03 c | 2.078 ± 0.001 a | 1.80 ± 0.02 b | n.d. | n.d. |
C20:3n3 | 1.6 ± 0.1 c | 1.19 ± 0.03 d | 2.2 ± 0.2 b | 3.4 ± 0.1 a | 0.35 ± 0.01 e | 1.65 ± 0.02 c | n.d. | n.d. |
C22:0 | 4.58 ± 0.03 a | 3.41 ± 0.04 b | 3.2 ± 0.3 c | 1.9 ± 0.1 f | 1.87 ± 0.02 f | 2.18 ± 0.04 e | 2.9 ± 0.1 d | 4.41 ± 0.03 a |
C22:1 | 0.59 ± 0.02 d | 0.11 ± 0.01 g | 0.37 ± 0.02 e | 0.80 ± 0.02 c | 1.2 ± 0.1 b | 1.44 ± 0.04 a | 0.405 ± 0.001 e | 0.16 ± 0.01 f |
C20:5n3 | 0.5 ± 0.1 d | 0.031 ± 0.001 h | 0.20 ± 0.02 g | 1.50 ± 0.05 a | 1.1 ± 0.1 c | 1.20 ± 0.03 b | 0.42 ± 0.01 e | 0.33 ± 0.01 f |
C22:2 | 0.437 ± 0.001 d | n.d. | n.d. | 16.7 ± 0.5 a | 11.3 ± 0.1 b | 10.052 ± 0.005 c | n.d. | 0.37 ± 0.01 d |
C23:0 | 1.28 ± 0.02 b | 0.078 ± 0.001 e | 0.74 ± 0.04 d | n.d. | n.d. | n.d. | 1.20 ± 0.01 c | 1.50 ± 0.05 a |
C24:0 | 2.7135 ± 0.1 c | 0.90 ± 0.04 d | 0.8 ± 0.1 d | n.d. | n.d. | n.d. | 4.4 ± 0.2 a | 4.2 ± 0.2 b |
SFA | 73.8 ± 0.1 a | 69.98 ± 0.02 b | 68.3 ± 0.5 c | 55.3 ± 0.1 e | 40.7 ± 0.1 f | 37.05 ± 0.08 g | 65.3 ± 0.4 d | 75 ± 1 a |
MUFA | 5.2 ± 0.1 g | 7.47 ± 0.02 f | 15.8 ± 0.3 e | 15.5 ± 0.4 e | 41.5 ± 0.1 b | 44.9 ± 0.1 a | 31.5 ± 0.5 c | 21 ± 1 d |
PUFA | 21.1 ± 0.3 c | 22.55 ± 0.01 b | 15.9 ± 0.8 e | 29.2 ± 0.3 a | 17.82 ± 0.03 d | 18.0 ± 0.2 d | 3.2 ± 0.1 f | 4.8 ± 0.2 g |
PUFA/SFA | 0.286 ± 0.001 e | 0.322 ± 0.001 d | 0.23 ± 0.01 f | 0.527 ± 0.005 a | 0.4381 ± 0.0001 c | 0.486 ± 0.005 b | 0.048 ± 0.001 h | 0.065 ± 0.004 g |
n-6/n-3 | 2.32 ± 0.01 e | 3.82 ± 0.01 b | 2.7 ± 0.2 d | 3.1 ± 0.1 c | 3.7 ± 0.1 b | 2.59 ± 0.03 de | 3.1 ± 0.1 c | 6.6 ± 0.5 a |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
Fatty acids (mg/100 g dw) | ||||||||
C6:0 | 9.4 ± 0.5 g | 33 ± 3 b | 17 ± 2 f | 19.5 ± 0.2 e | 27.2 ± 0.4 c | 25.2 ± 0.3 d | 27 ± 1 cd | 50 ± 1 a |
C8:0 | 13 ± 1 e | 42.9 ± 0.8 a | 18 ± 2 d | 22 ± 1 c | 30.1 ± 0.2 b | 22.6 ± 0.5 c | 8.6 ± 0.2 f | 13.4 ± 0.4 e |
C10:0 | 12.2 ± 0.1 e | 29 ± 2 d | 44 ± 4 a | 30 ± 3 cd | 38.4 ± 0.1 b | 32.6 ± 0.1 c | 12.5 ± 0.5 e | 13.39 ± 0.03 e |
C11:0 | 50.13 ± 0.03 b | 92 ± 2 a | 37 ± 3 c | 25 ± 1 e | 32 ± 1 d | 30.2 ± 0.5 d | 25 ± 1 e | 25 ± 1 e |
C12:0 | 30 ± 3 d | 250.2 ± 0.5 a | 150 ± 16 b | 59 ± 1 c | 51.8 ± 0.2 c | 30.0 ± 0.5 d | 15 ± 1 e | 7.3 ± 0.1 e |
C13:0 | 4.4 ± 0.4 b | 10.5 ± 0.1 a | 3.2 ± 0.1 d | 3.7 ± 0.1 c | 3 ± 1 d | n.d. | n.d. | n.d. |
C14:0 | 89 ± 5 d | 335.4 ± 0.9 a | 170 ± 14 b | 105.4 ± 0.4 c | 107 ± 1 c | 55 ± 1 e | 43 ± 2 f | 37 ± 2 f |
C14:1 | 4.4 ± 0.4 b | 8.3 ± 0.5 a | 2.5 ± 0.1 c | 2.5 ± 0.1 c | n.d. | n.d. | n.d. | n.d. |
C15:0 | 39 ± 2 c | 92 ± 1 a | 37 ± 4 c | 28 ± 1 d | 42.4 ± 0.1 b | 29.6 ± 0.3 d | 18.6 ± 0.3 e | 16 ± 1 e |
C15:1 | 3.1 ± 0.1 d | 8.1 ± 0.3 c | 2.6 ± 0.1 d | 2.3 ± 0.1 d | 1519.7 ± 0.5 a | 905 ± 5 b | 3.5 ± 0.2 d | 4.1 ± 0.1 d |
C16:0 | 2223 ± 30 c | 6183 ± 10 a | 2672 ± 128 b | 38.1 ± 0.5 e | 48 ± 1 e | 36.7 ± 0.2 e | 881 ± 10 d | 901 ± 36 d |
C16:1 | 7.6 ± 0.3 g | 33.6 ± 0.3 c | 18 ± 2 e | 35.74 ± 0.02 b | 39 ± 1 a | 36 ± 2 b | 20.1 ± 0.2 d | 10.7 ± 0.5 f |
C17:0 | 39 ± 2 b | 91.5 ± 0.1 a | 38 ± 2 b | 22.5 ± 0.4 e | 26.7 ± 0.2 d | 18.4 ± 0.5 f | 28 ± 1 cd | 29 ± 1 c |
C18:0 | 312 ± 4 f | 993.0 ± 0.6 c | 531 ± 29 e | 1775 ± 4 a | 1460 ± 2 b | 712.4 ± 0.2 d | 209 ± 1 h | 230 ± 4 g |
C18:1n9c | 195 ± 3 f | 903 ± 2 a | 890 ± 17 a | 520 ± 16 c | 398.8 ± 0.4 d | 290 ± 2 e | 697 ± 11 b | 417 ± 24 d |
C18:2n6c | 592 ± 2 c | 2208 ± 1 a | 641 ± 20 b | 198.5 ± 0.4 d | 132 ± 2 e | 82 ± 5 f | 54 ± 2 g | 83 ± 5 f |
C18:3n3 | 263 ± 1 b | 543 ± 1 a | 163 ± 16 c | 25.6 ± 0.3 d | 17.3 ± 0.2 de | 14.9 ± 0.5 e | 11.6 ± 0.4 e | 7.6 ± 0.3 e |
C20:0 | 202 ± 6 b | 369.3 ± 0.6 a | 148 ± 3 c | 4.9 ± 0.4 g | 27 ± 1 e | 18.4 ± 0.5 f | 80 ± 1 d | 80 ± 4 d |
C20:1 | 4.2 ± 0.1 e | 11 ± 1 d | 32 ± 3 a | 27.5 ± 0.6 b | 18.1 ± 0.2 c | 31 ± 1 a | 27 ± 1 b | 17 ± 1 c |
C20:2 | 1.5 ± 0.1 c | 22 ± 2 a | 21 ± 2 a | 8 ± 1 b | n.d. | n.d. | n.d. | n.d. |
C21:0 | 40 ± 4 b | 70 ± 3 a | 11 ± 1 d | 5 ± 1 e | 7.8 ± 0.3 de | n.d. | 16 ± 1 c | 17.5 ± 0.5 c |
C20:3n6 | 13 ± 1 e | 21.6 ± 0.7 d | n.d. | 71 ± 1 b | 101.80 ± 0.03 a | 52 ± 1 c | n.d. | n.d. |
C20:3n3 | 76 ± 1 c | 156 ± 3 a | 131 ± 13 b | 136 ± 3 b | 17.2 ± 0.3 e | 48 ± 1 d | n.d. | n.d. |
C22:0 | 215 ± 6 b | 447 ± 5 a | 194 ± 19 c | 75 ± 3 e | 92 ± 1 d | 63 ± 1 e | 79 ± 1 e | 97.0 ± 0.5 d |
C22:1 | 27.7 ± 0.5 d | 14 ± 1 f | 22 ± 1 e | 32 ± 1 c | 58 ± 3 a | 42 ± 1 b | 9.71 ± 0.02 g | 3.6 ± 0.4 h |
C20:5n3 | 25.2 ± 0.4 d | 3.9 ± 0.1 g | 12 ± 1 e | 60 ± 2 a | 53 ± 4 b | 35 ± 1 c | 9.9 ± 0.2 ef | 7.3 ± 0.2 f |
C22:2 | 21 ± 2 d | n.d. | n.d. | 669 ± 19 a | 553 ± 7 b | 291.5 ± 0.1 c | n.d. | 8.1 ± 0.2 e |
C23:0 | 60 ± 1 a | 10.3 ± 0.1 e | 45 ± 2 b | n.d. | n.d. | n.d. | 28.8 ± 0.3 d | 33 ± 1 c |
C24:0 | 128 ± 6 a | 118 ± 5 b | 50 ± 4 e | n.d. | n.d. | n.d. | 106 ± 4 c | 92 ± 5 d |
SFA | 3466 ± 5 c | 9167 ± 3 a | 4164 ± 29 b | 2213 ± 4 d | 1993 ± 3 e | 1074 ± 2 h | 1568 ± 10 g | 1641 ± 31 f |
MUFA | 242 ± 4 g | 978 ± 2 c | 967 ± 20 c | 619 ± 16 e | 2034 ± 5 a | 1303 ± 2 b | 756 ± 12 d | 453 ± 26 f |
PUFA | 991 ± 1 c | 2955 ± 1 a | 970 ± 49 c | 1167 ± 13 b | 873 ± 1 d | 523 ± 4 e | 76 ± 2 g | 106 ± 4 f |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
Tocopherols (µg/100 g dw) | ||||||||
α-Tocopherol | 36.2 ± 0.1 b | 62 ± 2 a | 19.8 ± 0.8 c | 9.4 ± 0.3 e | 11.7 ± 0.5 d | 8.1 ± 0.3 f | n.d. | 199 ± 7 g |
γ-Tocopherol | n.d. | 87 ± 3 b | n.d. | 82 ± 3 c | n.d. | 120 ± 2 a | n.d. | n.d. |
Total tocopherols | 36.2 ± 0.1 d | 149 ± 1 a | 19.8 ± 0.8 e | 91 ± 5 c | 11.7 ± 0.5 f | 128 ± 2 b | n.d. | 199 ± 7 g |
Organic acids (g/100 g dw) | ||||||||
Oxalic acid | 0.320 ± 0.002 b | 0.328 ± 0.002 b | 0.093 ± 0.002 d | 0.181 ± 0.001 cd | 0.206 ± 0.003 c | 0.129 ± 0.001 cd | 9.5 ± 0.2 a | 0.31 ± 0.01 b |
Quinic acid | 0.43 ± 0.01 d | 0.29 ± 0.02 e | tr | tr | 0.056 ± 0.001 f | 0.92 ± 0.01 c | 4.2 ± 0.1 b | 4.82 ± 0.06 a |
Malic acid | 0.81 ± 0.02 e | 1.87 ± 0.01 a | 1.42 ± 0.02 d | 1.62 ± 0.02 b | 1.51 ± 0.01 c | 0.40 ± 0.02 f | 0.008 ± 0.001 g | tr |
Citric acid | 0.39 ± 0.02 f | 0.55 ± 0.01 d | 0.49 ± 0.02 e | 0.75 ± 0.04 c | 1.15 ± 0.04 b | 0.77 ± 0.03 c | 1.9 ± 0.1 a | n.d. |
Fumaric acid | 0.0076 ± 0.0004 a | 0.0049 ± 0.0002 b | tr | tr | tr | tr | 0.0019 ± 0.0001 c | n.d. |
Total organic acids | 1.96 ± 0.05 f | 3.042 ± 0.003 c | 2.002 ± 0.004 f | 2.55 ± 0.02 d | 2.92 ± 0.03 c | 2.22 ± 0.04 e | 15.6 ± 0.3 a | 4.95 ± 0.06 b |
Free Sugars (g/100 g dw) | ||||||||
Fructose | 0.41 ± 0.07 e | 1.41 ± 0.09 a | 1.1 ± 0.1 b | 0.91 ± 0.05 c | 0.53 ± 0.08 d | 0.21 ± 0.06 f | 0.14 ± 0.01 f | 0.15 ± 0.02 f |
Glucose | 0.144 ± 0.003 d | 0.19 ± 0.01 c | 0.29 ± 0.03 b | 0.29 ± 0.03 b | 0.30 ± 0.01 b | 0.10 ± 0.07 e | 0.27 ± 0.01 b | 0.557 ± 0.004 a |
Sucrose | 1.73 ± 0.07 d | 4.97 ± 0.07 a | 2.97 ± 0.03 b | 2.82 ± 0.04 c | 1.3 ± 0.1 e | 0.33 ± 0.07 f | 0.28 ± 0.02 g | 0.12 ± 0.01 h |
Trehalose | 0.32 ± 0.06 e | 0.30 ± 0.05 ef | 0.75 ± 0.04 c | 1.16 ± 0.03 a | 0.90 ± 0.02 b | 0.24 ± 0.05 f | 0.34 ± 0.02 e | 0.57 ± 0.02 d |
Raffinose | 1.77 ± 0.08 b | 2.13 ± 0.04 a | 1.76 ± 0.04 b | 1.72 ± 0.06 b | n.d. | n.d. | n.d. | n.d. |
Total free sugars | 4.4 ± 0.1 c | 9.0 ± 0.2 a | 6.8 ± 0.2 b | 6.9 ± 0.2 b | 3.0 ± 0.2 d | 0.9 ± 0.2 f | 1.03 ± 0.02 f | 1.40 ± 0.03 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy 2020, 10, 1976. https://doi.org/10.3390/agronomy10121976
Mandim F, Petropoulos SA, Giannoulis KD, Santos-Buelga C, Ferreira ICFR, Barros L. Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy. 2020; 10(12):1976. https://doi.org/10.3390/agronomy10121976
Chicago/Turabian StyleMandim, Filipa, Spyridon A. Petropoulos, Kyriakos D. Giannoulis, Celestino Santos-Buelga, Isabel C. F. R. Ferreira, and Lillian Barros. 2020. "Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time" Agronomy 10, no. 12: 1976. https://doi.org/10.3390/agronomy10121976
APA StyleMandim, F., Petropoulos, S. A., Giannoulis, K. D., Santos-Buelga, C., Ferreira, I. C. F. R., & Barros, L. (2020). Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy, 10(12), 1976. https://doi.org/10.3390/agronomy10121976