Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushrooms Material and Preparation of Extracts
2.2. Total Phenolic Content
2.3. Total Flavonoid Content
2.4. ABTS Radical Cation Decolorization Assay (ABTS+)
2.5. Bacterial Strains
2.6. Assessment of Antibacterial Activity of Mushrooms Extracts
2.7. Determination of the Minimum Inhibitory Concentration (MIC)
2.8. Determination of the Minimum Bactericidal Concentration (MBC)
2.9. Elemental Analysis
2.10. Statistical Analysis
3. Results
3.1. Total Phenolic Content of Mushrooms Extracts
3.2. Total Flavonoid Content
3.3. Antioxidant Activity of Mushroom Extracts
3.4. Antibacterial Activity of Mushrooms Extracts
3.5. Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs)
3.6. Elemental Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martins, N.; Ferreira, I.C.F.R. Mountain food products: A broad spectrum of market potential to be exploited. Trends Food Sci. Technol. 2017, 67, 12–18. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic profiles, antioxidant capacities and metal chelating ability of edible mushrooms commonly consumed in China. LWT-Food Sci. Technol. 2016, 72, 423–431. [Google Scholar] [CrossRef]
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Farcas, A.C.; Tofana, M.; Semeniuc, C.A. Bioactive Compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules 2018, 23, 3272. [Google Scholar] [CrossRef] [Green Version]
- Bekiaris, G.; Tagkouli, D.; Koutrotsios, G.; Kalogeropoulos, N.; Zervakis, G.I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods 2020, 9, 535. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.-C.; Chang, J.-S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Zavastin, D.E.; Mihai, C.T.; Voichita, G.; Gherghel, D.; Silion, M.; Trifan, A.; Miron, A. Antioxidant and antigenotoxic potential of Ramaria largentii Marr & D. E. Stuntz, a wild edible mushroom collected from Northeast Romania. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 108, 429–437. [Google Scholar] [CrossRef]
- Piskov, S.; Timchenko, L.; Grimm, W.D.; Rzhepakovsky, I.; Avanesyan, S.; Sizonenko, M.; Kurchenko, V. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods 2020, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Ragucci, S.; Pacifico, S.; Ruocco, M.R.; Crescente, G.; Nasso, R.; Simonetti, M.; Masullo, M.; Piccolella, S.; Pedone, P.V.; Landi, N.; et al. Ageritin from poplar mushrooms: Scale-up purification and cytotoxicity towards undifferentiated and differentiated SH-SY5Y cells. Food Funct. 2019, 10, 6342–6350. [Google Scholar] [CrossRef]
- Citores, L.; Ragucci, S.; Ferreras, J.M.; Di Maro, A.; Iglesias, R. Ageritin, a Ribotoxin from Poplar Mushroom (Agrocybe aegerita) with Defensive and Antiproliferative Activities. ACS Chem. Biol. 2019, 14, 1319–1327. [Google Scholar] [CrossRef]
- Landi, N.; Ragucci, S.; Russo, R.; Valletta, M.; Pizzo, E.; Ferreras, J.M.; Di Maro, A. The ribotoxin-like protein Ostreatin from Pleurotus ostreatus fruiting bodies: Confirmation of a novel ribonuclease family expressed in basidiomycetes. Int. J. Biol. Macromol. 2020, 161, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Zsigmond, A.R.; Varga, K.; Harangi, S.; Baranyai, E.; Urák, I. Elemental profile of edible mushrooms from a forest near a major Romanian city. Acta Univ. Sapientiae Agric. Environ. 2015, 7, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Zsigmond, A.R.; Kantor, I.; May, Z.; Urak, I.; Heberger, K. Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania). Chemosphere 2020, 238, 124566. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E.; Nita, S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed Res. Int. 2013, 2013, 313905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriela Popa, G.; Nicolcioiu, M.B.; Ciuca, M.; Cornea, C.P. Studies concerning the in vitro cultivation of some indigenous macromycete species. Sci. Bulletin. Ser. F Biotechnol. 2014, XVIII, 54–59. [Google Scholar]
- Mureşan, E.A.; Muste, S.; Borşa, A.; Sconţa, Z.; Crainic, D.; Mureşan, V. Total phenolic content changes during apple growth as a function of variety and fruit position in the crown. J. Agroaliment. Process. Technol. 2012, 18, 341–344. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzym. 1999, 299, 152–178. [Google Scholar]
- Farcas, A.; Socaci, S.; Tofana, M.; Mudura, E.; Salanta, L. The Content in Bioactive Compounds of Different Brewers’ Spent Grain Aqueous Extracts. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2016, 73, 143. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Alcolea, J.F.; Acosta, M. Estimation of free radical-quenching activity of leaf pigment extracts. Phytochem. Anal. PCA 2001, 12, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Semeniuc, C.A.; Pop, C.R.; Rotar, A.M. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J. Food Drug Anal. 2017, 25, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Pop, A.V.; Tofană, M.; Socaci, S.A.; Pop, C.; Rotar, A.M.; Nagy, M.; Salanţă, L. Determination of Antioxidant Capacity and Antimicrobial Activity of Selected Salvia Species. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2016, 73, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Semeniuc, C.A.; Socaciu, M.I.; Socaci, S.A.; Muresan, V.; Fogarasi, M.; Rotar, A.M. Chemometric Comparison and Classification of Some Essential Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families Based on Their Chemical Composition and Biological Activities. Molecules 2018, 23, 2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pascual-Teresa, S.; Moreno, D.A.; Garcia-Viguera, C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, K.; Verma, R.K. Chapter 2—Fungal resources: Current utilization, future prospects, and challenges. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, J., Gehlot, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 15–38. [Google Scholar] [CrossRef]
- Robaszkiewicz, A.; Bartosz, G.; Lawrynowicz, M.; Soszynski, M. The role of polyphenols, beta-carotene, and lycopene in the antioxidative action of the extracts of dried, edible mushrooms. J. Nutr. Metab. 2010, 2010, 173274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, H.S.; Chye, F.Y.; Ho, S.K.; Ho, C.W. Phenolic profiles of selected edible wild mushrooms as affected by extraction solvent, time and temperature. Asian J. Food Agro-Ind. 2009, 2, 392–401. [Google Scholar]
- Barros, L.; Baptista, P.; Ferreira, I.C.F.R. Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem. Toxicol. 2007, 45, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Keleş, A.; Koca, İ.; Gençcelep, H. Antioxidant properties of wild edible mushrooms. J. Food Process. Technol. 2011, 2, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Smolskaitė, L.; Venskutonis, P.R.; Talou, T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Sci. Technol. 2015, 60, 462–471. [Google Scholar] [CrossRef] [Green Version]
Mushroom Species | TPC (mg GAE/100 g DW) | TFC (mg QE/100 g DW) | ABTS (µM Trolox/g DW) |
---|---|---|---|
Agaricus bisporus | 408.57 ± 0.02 c | 40.56 ± 0.05 b | 18.38 ± 0.01 c |
Pleurotus ostreatus | 519.22 ± 0.04 b | 30.69 ± 0.00 c | 27.17 ± 0.00 b |
Cantharellus cibarius | 104.91 ± 0.03 e | 20.53 ± 0.03 d | 12.50 ± 0.00 d |
Boletus edulis | 806.58 ± 0.00 a | 70.81 ± 0.01 a | 97.09 ± 0.01 a |
Lactarius piperatus | 113.06 ± 0.02 d | 12.52 ± 0.03 e | 11.15 ± 0.00 e |
TPC (mg GAE/100 g DW) | TFC (mg QE/100 g DW) | ABTS+ (µM Trolox/g DW) | |
---|---|---|---|
TPC (mg GAE/100 g DW) | 1 | 0.9291 | 0.8780 |
TFC (mg QE/100 g DW) | 0.9291 | 1 | 0.9231 |
ABTS+ (µM Trolox/g DW) | 0.8780 | 0.9231 | 1 |
Mushroom Extract/Positive Control | S. typhimurium ATCC 14028 | S. aureus ATCC 49444 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | B. cereus ATCC 11778 |
---|---|---|---|---|---|
A. bisporus | 10.75 ± 0.03 c | 9.25 ± 0.02 e | 8.75 ± 0.00 e | 9.5 ± 0.01 d | 10.75 ± 0.02 b |
P. ostreatus | 10 ± 0.01 d | 9.75 ± 0.04 d | 9.2 ± 0.07 d | 8.5 ± 0.00 e | 10.32 ± 0.04 c |
C. cibarius | 10.79 ± 0.04 c | 11.65 ± 0.07 a | 11.49 ± 0.01 b | 10.55 ± 0.01 c | 10.11 ± 0.03 d |
B. edulis | 11.18 ± 0.01 a | 10.91 ± 0.00 b | 11.98 ± 0.01 a | 11.08 ± 0.04 b | 12.04 ± 0.01 a |
L. piperatus | 10.89 ± 0.02 b | 10.63 ± 0.02 c | 11.26 ± 0.04 c | 13.24 ± 0.03 a | 10.09 ± 0.00 e |
Gentamicin | 30.28 ± 0.00 | 27.34 ± 0.00 | 25.47 ± 0.00 | 26.36 ± 0.00 | 27.76 ± 0.00 |
Mushroom Species | S. typhimurium ATCC 14028 | S. aureus ATCC 49444 | P. aeruginosa ATCC 27853 | E. coli ATCC 25922 | B. cereus ATCC 11778 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
A. bisporus | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a |
P. ostreatus | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a |
C. cibarius | 59.52 ± 0.00 a | 59.52 ± 0.00 | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a | 59.52 ± 0.00 a |
B. edulis | 28.34 ± 0.00 c | 28.34 ± 0.00 c | 13.49 ± 0.00 c | 28.34 ± 0.00 c | 28.34 ± 0.00 c | 28.34 ± 0.00 c | 13.49 ± 0.00 c | 28.34 ± 0.00 c | 28.34 ± 0.00 c | 28.34 ± 0.00 c |
L. piperatus | 56.68 ± 0.00 b | 56.68 ± 0.00 b | 26.99 ± 0.00 b | 56.68 ± 0.00 b | 56.68 ± 0.00 b | 56.68 ± 0.00 b | 26.99 ± 0.00 b | 56.68 ± 0.00 b | 56.68 ± 0.00 b | 56.68 ± 0.00 b |
Elements | Concentration in Mushroom Species, mg/kg DW | ||||
---|---|---|---|---|---|
A. bisporus | P. ostreatus | C. cibarius | B. edulis | L. piperatus | |
Cu | 30.20 ± 0.05 c | 13.28 ± 0.09 e | 49.20 ± 0.08 a | 32.41 ± 0.01 b | 27.27 ± 0.02 d |
Fe | 73.82 ± 0.07 e | 91.30 ± 1.00 c | 165.50 ± 0.00 a | 105.17 ± 0.02 b | 85.38 ± 0.09 d |
Mn | 14.79 ± 0.04 e | 25.40 ± 0.02 d | 28.43 ± 0.03 c | 60.84 ± 0.00 a | 35.71 ± 0.02 b |
Cr | 0.85 ± 0.01 a | 0.76 ± 0.02 b | 0.44 ± 0.00 e | 0.69 ± 0.01 c | 0.66 ± 0.01 d |
Ba | 0.29 ± 0.03 c | 0.20 ± 0.02 d | 1.00 ± 0.01 a | 0.14 ± 0.02 e | 0.45 ± 0.01 b |
Co | 0.13 ± 0.01 c | 0.07 ± 0.02 d | 0.24 ± 0.03 b | 0.32 ± 0.01 a | 0.32 ± 0.04 a |
Zn | 85.24 ± 0.01 e | 127.33 ± 0.02 c | 149.14 ± 0.02 b | 163.26 ± 0.02 a | 91.40 ± 0.03 d |
Ca | 127.33 ± 0.25 e | 725.40 ± 0.17 a | 530.40 ± 0.26 b | 451.23 ± 0.12 c | 347.60 ± 0.30 d |
Mg | 598.33 ± 0.25 e | 803.33 ± 0.23 c | 810.47 ± 0.38 b | 998.23 ± 0.15 a | 752.33 ± 0.12 d |
Na | 151.10 ± 0.00 c | 149.23 ± 0.15 d | 120.60 ± 0.30 e | 176.40 ± 0.44 b | 217.27 ± 0.12 a |
K | 26640.40 ± 0.20 b | 25600.40 ± 0.35 c | 21260.23 ± 0.06 e | 23802.40 ± 0.26 d | 29118.53 ± 0.29 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogarasi, M.; Diaconeasa, Z.M.; Pop, C.R.; Fogarasi, S.; Semeniuc, C.A.; Fărcaş, A.C.; Țibulcă, D.; Sălăgean, C.-D.; Tofană, M.; Socaci, S.A. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy 2020, 10, 1972. https://doi.org/10.3390/agronomy10121972
Fogarasi M, Diaconeasa ZM, Pop CR, Fogarasi S, Semeniuc CA, Fărcaş AC, Țibulcă D, Sălăgean C-D, Tofană M, Socaci SA. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy. 2020; 10(12):1972. https://doi.org/10.3390/agronomy10121972
Chicago/Turabian StyleFogarasi, Melinda, Zorița Maria Diaconeasa, Carmen Rodica Pop, Szabolcs Fogarasi, Cristina Anamaria Semeniuc, Anca Corina Fărcaş, Dorin Țibulcă, Claudiu-Dan Sălăgean, Maria Tofană, and Sonia Ancuța Socaci. 2020. "Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania" Agronomy 10, no. 12: 1972. https://doi.org/10.3390/agronomy10121972