Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design, Cultural Traits, and Water Conditions Applied
2.3. Traits Evaluated
2.4. Analysis of Variance and Statistical—Genetic Parameters
2.5. Correlation Analysis
3. Results
3.1. Genetic Variability and Effects of Different Water Conditions on SPAD Index and Agronomic (AGRO) and Root (ROOT) Traits
3.2. Phenotypic Correlations within and among AGRO, SPAD Index, and ROOT Trait Groups under WS and WW Conditions
3.3. Canonical Correlations among AGRO, SPAD Index, and ROOT Trait Groups in WS and WW Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freitas, S.P., Jr.; Amaral Juniot, A.T.; Rangel, R.M.; Viana, A.P. Genetic gains in popcorn by full-sib recurrent selection. Crop. Breed. Appl. Biotechnol. 2009, 9, 1–7. [Google Scholar] [CrossRef]
- Amaral Junior, A.T.; Gonçalves, L.S.A.; Freitas, S.D.P., Jr.; Candido, L.S.; Vittorazzi, C.; Pena, G.F.; Ribeiro, R.M.; Silva, T.R.D.C.; Pereira, M.G.; Scapim, C.A.; et al. UENF 14: A new popcorn cultivar. Crop Breed. Appl. Biotechnol. 2013, 13, 218–220. [Google Scholar]
- De Lima, V.J.; do Amaral, A.T., Jr.; Kamphorst, S.H.; Pena, G.F.; Leite, J.T.; Schmitt, K.F.; Vittorazzi, C.; de Almeida Filho, J.E.; Mora, F. Combining ability of S3 progenies for key agronomic traits in popcorn: Comparison of testers in top-crosses. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.; do Amaral Junior, A.T.; Kamphorst, S.H.; Gonçalves, G.M.B.; Santos, P.H.A.D.; Silva Vivas, J.M.; Sousa Mafra, G.; Khan, S.; Tomaz de Oliveira, F.; Schmitt, K.F.M.; et al. Evaluation of Popcorn Hybrids for Nitrogen Use Efficiency and Responsiveness. Agronomy 2020, 10, 485. [Google Scholar] [CrossRef] [Green Version]
- Mafra, G.S.; do Amaral Junior, A.T.; de Almeida Filho, J.E.; Vivas, M.; Santos, P.H.A.D.; Santos, J.S.; Pena, G.F.; Lima, V.J.d.; Kamphorst, S.H.; de Oliveira, F.T.; et al. SNP-based mixed model association of growth- and yield-related traits in popcorn. PLoS ONE 2019, 14, e0218552. [Google Scholar] [CrossRef]
- Cabral, P.D.S.; do Amaral, A.T., Jr.; de Freitas, I.L.J.; Ribeiro, R.M.; da Silva, T.R.C. Cause and effect of quantitative characteristics on grain expansion capacity in popcorn. Rev. Ciênc. Agronôm. 2016, 47, 108–117. [Google Scholar] [CrossRef]
- Kist, B.B.; de Carvalho, C.; Beling, R.R. Anuário Brasileiro do Milho 2019; Beling, R.R., Ed.; Editora Gazeta: Santa Cruz do Sul, Brazil, 2019; ISBN 1808-3439. [Google Scholar]
- Awange, J.L.; Mpelasoka, F.; Goncalves, R.M. When every drop counts: Analysis of Droughts in Brazil for the 1901–2013 period. Sci. Total Environ. 2016, 566–567, 1472–1488. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Adebayo, M.A.; Menkir, A.; Hearne, S.; Kolawole, A.O. Gene action controlling normalized difference vegetation index in crosses of elite maize (Zea mays L.) inbred lines. Cereal Res. Commun. 2017, 45, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 2008, 103, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Romano, G.; Zia, S.; Spreer, W.; Sanchez, C.; Cairns, J.; Luis, J.; Müller, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput. Electron. Agric. 2011, 79, 67–74. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, K.O.D.G.; Gezan, S.A.; Guimarães, C.T.; Parentoni, S.N.; Guimarães, P.E.D.O.; Carneiro, N.P.; Portugal, A.F.; Bastos, E.A.; Cardoso, M.J.; Anoni, C.D.O.; et al. Estimating Genotype × Environment Interaction for and Genetic Correlations among Drought Tolerance Traits in Maize via Factor Analytic Multiplicative Mixed Models. Crop Sci. 2018, 58, 72. [Google Scholar] [CrossRef]
- Bolaños, J.; Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crop. Res. 1993, 31, 233–252. [Google Scholar] [CrossRef]
- Tollenaar, M.; Ahmadzadeh, A.; Lee, E.A. Physiological Basis of Heterosis for Grain Yield in Maize. Crop Sci. 2004, 44, 2086. [Google Scholar] [CrossRef]
- Araus, J.L.; Sánchez, C.; Cabrera-Bosquet, L. Is heterosis in maize mediated through better water use? New Phytol. 2010, 187, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.E.; Sanchez, C.; Vargas, M.; Ordoñez, R.; Araus, J.L. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-watered Conditions. J. Integr. Plant Biol. 2012, 54, 1007–1020. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Menkir, A.; Blay, E.; Gracen, V.; Danquah, E.; Hearne, S. Genetic analysis of drought tolerance in adapted × exotic crosses of maize inbred lines under managed stress conditions. Euphytica 2014, 196, 261–270. [Google Scholar] [CrossRef]
- Joshi, A.K.; Kumari, M.; Singh, V.P.; Reddy, C.M.; Kumar, S.; Rane, J.; Chand, R. Stay green trait: Variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 2006, 153, 59–71. [Google Scholar] [CrossRef]
- Costa, E.F.N.; Santos, M.F.; Moro, G.V.; Alves, G.F.; de Souza Junior, C.L. Herança da senescência retardada em milho. Pesqui. Agropecu. Bras. 2008, 43, 207–213. [Google Scholar] [CrossRef]
- Zia, S.; Romano, G.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Müller, J. Infrared Thermal Imaging as a Rapid Tool for Identifying Water-Stress Tolerant Maize Genotypes of Different Phenology. J. Agron. Crop Sci. 2013, 199, 75–84. [Google Scholar] [CrossRef]
- Araus, J.L.; Serret, M.D.; Edmeades, G.O. Phenotyping maize for adaptation to drought. Front. Physiol. 2012, 3, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, F.A.; Campostrini, E.; Netto, A.T.; De Menezes De Assis Gomes, M.; Ferraz, T.M.; Glenn, D.M. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.). Theor. Exp. Plant Physiol. 2014, 26, 201–210. [Google Scholar] [CrossRef]
- Lynch, J. Root Architecture and Plant Productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef]
- Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 2011, 341, 75–87. [Google Scholar] [CrossRef]
- Hund, A.; Ruta, N.; Liedgens, M. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 2009, 318, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lynch, J.P. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J. Exp. Bot. 2016, 67, 4545–4557. [Google Scholar] [CrossRef] [Green Version]
- Kamphorst, S.H.; do Amaral, A.T., Jr.; de Lima, V.J.; Guimarães, L.J.M.; Schmitt, K.F.M.; Leite, J.T.; Santos, P.H.A.D.; Chaves, M.M.; Mafra, G.S.; dos Santos, D.R., Jr.; et al. Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 2019, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Do Amaral, A.T., Jr.; dos Santos, A.; Gerhardt, I.F.S.; Kurosawa, R.N.F.; Moreira, N.F.; Pereira, M.G.; Gravina, G.A.; Silva, F.H.L. Proposal of a super trait for the optimum selection of popcorn progenies based on path analysis. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical Correlation Analysis: An Overview with Application to Learning Methods. Neural Comput. 2004, 16, 2639–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, B. Canonical Correlation Analysis. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Vittorazzi, C.; Júnior, A.T.A.; Guimarães, A.G.; Silva, F.H.L.; Pena, G.F.; Daher, R.F.; Gerhardt, I.F.S.; Oliveira, G.H.F.; Santos, P.H.A.D.; Souza, Y.P.; et al. Evaluation of genetic variability to form heterotic groups in popcorn. Genet. Mol. Res. 2018, 17. [Google Scholar] [CrossRef]
- Christensen, H.K.; Montgomery, C.A. Corporate economic performance: Diversification strategy versus market structure. Strateg. Manag. J. 1981, 2, 327–343. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES—A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. Modelos Biométricos Aplicados ao Melhoramento Genético; UFV: Viçosa, Brazil, 2012; ISBN 9788572694339. [Google Scholar]
- De Sousa Mendes, W.; Drews, T.A.; Medeiros, J.C.; Dalla Rosa, J.; Gualberto, A.V.; Mielezrski, F. Development and productivity of maize in response to spatial arrangement under semiarid condition of Northeastern Brazil. Aust. J. Crop Sci. 2017, 11, 313–321. [Google Scholar] [CrossRef]
- Durães, F.O.M.; dos Santos, M.X.; Gama, E.E.G.; Magalhães, P.C.; Albuquerque, P.E.P.; Guimarães, C.T. Fenotipagem Associada a Tolerância a Seca em Milho para Uso em Melhoramento, Estudos Genômicos e Seleção Assistida por Marcadores. Embrapa Milho Sorgo Circ. Téc. INFOTECA-E 2004, 39, 18. [Google Scholar]
- Zinselmeier, S.A.; Lauer, M.J.; Boyer, J.S. Reversing Drought-Induced Losses in Grain Yield: Sucrose Maintains Embryo Growth in Maize. Crop Sci. 1995, 35, 1390. [Google Scholar] [CrossRef]
- De Lima, V.J.; do Amaral, A.T., Jr.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; de Santos, T.O.; Schmitt, K.F.M.; Chaves, M.M.; de Oliveira, U.A.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef] [Green Version]
- Lima Neto, F.P.; Souza, C.L., Jr. De Number of recombinations and genetic properties of a maize population undergoing recurrent selection. Sci. Agric. 2009, 66, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-H.; Liu, X.-D.; Li, M.-S.; Zhang, S.-H. Identification of quantitative trait loci for anthesis-silking interval and yield components under drought stress in maize. Acta Bot. Sin. 2003, 45, 852–857. [Google Scholar]
- Combe, L.; Escobar-Gutiérrez, A.J. Sénescence d’un pied de maïs: Évolution de la floraison à la récolte. Botany 2009, 87, 1036–1053. [Google Scholar] [CrossRef]
- Yousfi, S.; Gracia-Romero, A.; Kellas, N.; Kaddour, M.; Chadouli, A.; Karrou, M.; Araus, J.L.; Serret, M.D. Combined Use of Low-Cost Remote Sensing Techniques and δ13C to Assess Bread Wheat Grain Yield under Different Water and Nitrogen Conditions. Agronomy 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Kamphorst, S.H.; do Amaral, A.T., Jr.; de Lima, V.J.; Diniz, S.P.H.A.; Rodrigues, W.P.; Silva, V.J.M.; Gonçalves, G.M.B.; Schmitt, K.F.M.; Leite, J.T.; Vivas, M.; et al. Comparison of selection traits for effective popcorn breeding under water limiting conditions. Front. Plant Sci. 2020, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, P.L.; Holm, P.B.; Krupinska, K. Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol. 2008, 10, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Killi, D.; Bussotti, F.; Raschi, A.; Haworth, M. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol. Plant 2017, 159, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Zhan, A.; Schneider, H.; Lynch, J.P. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize. Plant Physiol. 2015, 168, 1603–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, J.P. Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant Cell Environ. 2015, 38, 1775–1784. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; de Lima, V.J.; Schimitt, K.F.M.; Leite, J.T.; Azeredo, V.C.; Pena, G.F.; Santos, P.H.A.D.; Júnior, D.R.S.; da Silva Júnior, S.B.; Bispo, R.B.; et al. Water stress adaptation of popcorn roots and association with agronomic traits. Genet. Mol. Res. 2018, 17, 1–14. [Google Scholar] [CrossRef]
- Maazou, A.-R.S.; Tu, J.; Qiu, J.; Liu, Z. Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 2016, 7, 1858–1870. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.X.; Andrade, C.L.T.; Oliveira, A.C.; Leite, C.E.P.; Carvalho, H.W.L.; Gama, E.E.G.; Pacheco, C.A.P.; Gumarães, P.E.O.; Parentoni, S.N. Comportamento de Híbridos de Milho Selecionados e não Selecionados para Asi sob Estresse de Água no Florescimento e no Enchimento de Grãos. Rev. Bras. Milho Sorgo 2003, 2, 71–81. [Google Scholar] [CrossRef]
- Câmara, T.M.M.; Bento, D.A.V.; Alves, G.F.; Santos, M.F.; Moreira, J.U.V.; Souza, C.L., Jr. De Parâmetros genéticos de caracteres relacionados à tolerância à deficiência hídrica em milho tropical. Bragantia 2007, 66, 595–603. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010. [Google Scholar]
- Edmeades, G.O.; Bolaños, J.; Chapman, S.C.; Lafitte, H.R.; Banziger, M. Selection Improves Drought Tolerance in Tropical Maize Populations. Crop Sci. 1999, 39, 1306. [Google Scholar] [CrossRef]
- Pereira, M.G.; Amaral, A.T., Jr. Estimation of Genetic Components in Popcorn Based on the Nested Design. Crop Breed. Appl. Biotechnol. 2001, 1, 3–10. [Google Scholar] [CrossRef]
- Lu, Y.; Hao, Z.; Xie, C.; Crossa, J.; Araus, J.; Gao, S.; Vivek, B.S.; Magorokosho, C.; Mugo, S.; Makumbi, D.; et al. Field Crops Research Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop. Res. 2011, 124, 37–45. [Google Scholar] [CrossRef]
Traits | Water Condition (WC) | Mean Squares (MS) of Joint Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water Stressed (MS) | Well Watered (MS) | WC | Genotype × WC | |||||||||||
Block | Genotype | Error | Mean | CV% | H2 | Block | Genotype | Error | Mean | CV% | H2 | |||
(DF = 2) | (DF = 19) | (DF = 38) | (DF = 2) | (DF = 19) | (DF = 38) | (DF = 1) | (DF = 19) | |||||||
Agronomic traits (AGRO) | ||||||||||||||
GY | 137418 | 55,9525 ** | 66,624 | 1139.11 | 22.65 | 88.09 | 60,1287 | 1,839,610 ** | 336,794 | 2548.07 | 22.77 | 81.69 | 5.9 × 107 ** | 70.2 × 105 * |
PE | 2.75 | 36.4 ** | 3.35 | 20.91 | 8.75 | 90.79 | 2.52 | 52.27 ** | 16.39 | 29.35 | 13.79 | 68.62 | 2136.4 ** | 28.35 ** |
PR | 0.00 | 0.031 * | 0.01 | 0.86 | 14.08 | 53.22 | 0.10 | 0.060 ** | 0.02 | 1.02 | 12.32 | 73.64 | 0.785 * | 0.073 ** |
HG | 0.89 | 5.533 ** | 0.53 | 9.69 | 7.49 | 90.44 | 1.33 | 5.52 ** | 1.72 | 12.67 | 10.36 | 68.75 | 265.9 ** | 1.71 ns |
ED | 9.04 | 20.06 ** | 2.75 | 27.94 | 5.94 | 86.27 | 10.59 | 17.70 ** | 2.39 | 29.12 | 5.31 | 86.46 | 41.8 ** | 3.45 ** |
EL | 3.38 | 6.18 ** | 1.14 | 12.62 | 8.46 | 81.49 | 2.97 | 5.57 ** | 0.81 | 12.72 | 7.10 | 85.34 | 0.25 ns | 0.79 ns |
DM | 521.8 | 6812.3 ** | 1807.8 | 313.94 | 13.54 | 73.46 | 21,931.2 | 10,358.4 ** | 2557.9 | 368.31 | 13.73 | 75.31 | 8.8 × 104 * | 2614 ns |
SPAD index | ||||||||||||||
S1(17DAA) | 33.39 | 31.77 ** | 9.35 | 43.54 | 7.02 | 70.55 | 15.79 | 53.35 ** | 4.66 | 48.83 | 4.42 | 91.25 | 838 ** | 6.40 ns |
S2(22DAA) | 17.23 | 63.53 ** | 8.45 | 40.32 | 7.21 | 86.69 | 9.03 | 38.32 ** | 7.10 | 48.96 | 5.44 | 81.47 | 2239 ** | 9.81 ns |
S3(29DAA) | 1.52 | 64.42 ** | 8.88 | 39.70 | 7.50 | 86.20 | 24.45 | 37.26 ** | 4.59 | 48.15 | 4.45 | 87.67 | 2145 ** | 7.68 ns |
S4(36DAA) | 30.62 | 100.18 ** | 22.51 | 32.50 | 14.59 | 77.52 | 34.45 | 59.94 ** | 9.69 | 45.98 | 6.77 | 83.82 | 5452 ** | 24.11 ns |
S5(42DAA) | 39.71 | 82.73 ** | 24.20 | 18.81 | 26.15 | 70.74 | 49.96 | 108.62 ** | 13.30 | 39.35 | 9.26 | 87.75 | 12663 ** | 45.84 ** |
Root traits (ROOT) | ||||||||||||||
BN | 0.53 | 6.472 ** | 0.50 | 9.12 | 7.75 | 92.27 | 2.77 | 3.94 ns | 2.79 | 8.67 | 19.25 | 29.27 | 6.03 ns | 5.15 ** |
BA | 14.82 | 71.01 ** | 8.12 | 50.23 | 5.67 | 88.55 | 7.89 | 243.40 ** | 31.45 | 37.20 | 15.07 | 87.07 | 5094 ** | 48.73 ** |
BD | 0.00 | 4.002 ** | 0.16 | 5.98 | 6.75 | 95.91 | 0.14 | 4.276 ** | 0.31 | 5.26 | 10.66 | 92.63 | 15.95 ** | 1.43 ** |
CN | 2.60 | 14.82 ** | 1.61 | 16.29 | 7.78 | 89.13 | 1.02 | 7.16 ** | 1.52 | 15.31 | 8.05 | 78.74 | 28.8 ns | 6.01 ** |
CA | 4.33 | 83.81 ** | 9.08 | 53.08 | 5.67 | 89.16 | 9.30 | 166.32 ** | 11.10 | 42.63 | 7.81 | 93.32 | 3276 ** | 38.84 ** |
CD | 0.07 | 4.737 ** | 0.14 | 5.62 | 6.64 | 97.05 | 0.40 | 2.836 ** | 0.20 | 4.12 | 10.86 | 92.91 | 67.45 ** | 1.76 ** |
Traits | Canonical Pairs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Water-Stressed | Well-Watered | ||||||||||
1st | 2nd | 3rd | 4th | 5th | 1st | 2nd | 3rd | 4th | 5th | ||
SPAD index | S1(17DAA) | −1.16 | 1.74 | 1.19 | −0.13 | 0.12 | 1.14 | 0.82 | −0.34 | 1.43 | −0.49 |
S2(22DAA) | 2.14 | −0.07 | −0.92 | −1.42 | 2.18 | 0.01 | −1.22 | 1.41 | 0.61 | −1.63 | |
S3(29DAA) | −0.33 | −1.64 | 1.05 | 2.04 | −1.19 | 0.03 | 0.09 | 0.79 | −1.86 | 2.41 | |
S4(36DAA) | 0.04 | 0.45 | −1.84 | 0.50 | −0.97 | −2.55 | −0.34 | −0.31 | 2.46 | 0.51 | |
S5(42DAA) | −0.10 | 0.27 | 1.20 | −0.80 | −0.63 | 1.20 | 1.48 | −0.90 | −2.51 | −1.00 | |
Agronomic (AGRO) | GY | 0.32 | 1.78 | −0.30 | −0.76 | 0.06 | −0.14 | −0.68 | 2.10 | 1.03 | 1.33 |
PE | 0.13 | −0.45 | −0.81 | 0.25 | 0.17 | 0.27 | 0.02 | 0.62 | −0.12 | 0.09 | |
PR | 0.33 | −0.15 | −0.16 | 0.33 | 0.94 | 0.42 | 1.15 | −1.06 | 0.36 | −0.76 | |
HG | −0.10 | 0.05 | 0.39 | 0.73 | 0.78 | −0.10 | −1.16 | 1.76 | 0.36 | 0.07 | |
ED | −0.30 | −0.64 | 0.04 | 1.20 | −0.70 | 0.67 | 0.52 | −0.54 | −1.13 | −0.47 | |
EL | −0.11 | −1.04 | −0.34 | −0.09 | −0.74 | 0.18 | 0.47 | −1.32 | 0.04 | −1.04 | |
DM | 0.90 | −0.23 | 0.29 | −0.04 | 0.28 | −0.94 | 0.65 | −0.08 | 0.15 | −0.40 | |
CC | 0.92 ** | 0.74 ** | 0.68 ** | 0.51 ns | 0.20 ns | 0.90 ** | 0.77 ** | 0.53 ns | 0.49 ns | 0.34 ns | |
DF | 35 | 24 | 15 | 8 | 3 | 35 | 24 | 15 | 8 | 3 | |
x2 | 194.6 | 93.7 | 51.5 | 18.2 | 2.1 | 175.9 | 88.2 | 39.2 | 21.2 | 6.7 |
Traits | Canonical Pairs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water-Stressed | Well-Watered | ||||||||||||
1st | 2nd | 3rd | 4th | 5th | 6th | 1st | 2nd | 3rd | 4th | 5th | 6th | ||
Roots | BN | −0.71 | 0.40 | −1.59 | 0.44 | 0.01 | 0.20 | −0.26 | −0.01 | 0.86 | −0.30 | −0.01 | 0.34 |
BA | −0.34 | 0.48 | 0.93 | 0.72 | 0.92 | 0.58 | −0.49 | 1.42 | 0.26 | 0.38 | 0.39 | −0.88 | |
BD | 0.32 | −0.94 | 0.05 | 1.27 | −1.47 | 0.20 | 0.32 | 0.33 | 0.38 | 0.95 | 0.49 | 0.03 | |
CN | 0.37 | −0.05 | −0.25 | −0.34 | −0.21 | 0.96 | 0.71 | 0.06 | 0.23 | −0.42 | 0.24 | −0.61 | |
CA | 0.07 | 0.28 | 0.01 | −1.10 | −0.96 | −1.00 | −0.21 | −1.47 | −0.48 | −0.61 | 0.39 | 0.90 | |
CD | 0.25 | 1.59 | −0.32 | −0.80 | 1.20 | −0.29 | 0.41 | 0.39 | −0.38 | −0.76 | −0.04 | 0.52 | |
Agronomic (AGRO) | GY | −0.42 | −0.16 | 0.10 | −1.27 | 1.04 | 1.11 | 0.02 | 1.21 | 0.47 | 1.97 | 0.18 | 1.17 |
PE | −0.89 | 0.97 | −0.50 | 0.56 | 0.37 | −0.07 | −0.12 | 0.13 | −0.73 | 0.59 | −0.68 | 0.34 | |
PR | 0.18 | −0.37 | 0.59 | 0.84 | 0.40 | −0.02 | −0.64 | −0.28 | −0.52 | −1.60 | −0.40 | 0.10 | |
HG | 0.22 | −1.12 | 0.34 | 0.05 | 0.14 | −0.90 | 0.70 | 0.27 | −0.17 | 1.68 | 0.10 | 0.45 | |
ED | 0.94 | 0.38 | −0.43 | 0.53 | −0.88 | −0.43 | 0.61 | −0.70 | −0.28 | −0.80 | 0.09 | 0.07 | |
EL | 0.17 | −0.16 | 0.19 | 0.55 | −1.58 | 0.13 | −0.66 | −1.48 | −0.27 | −1.10 | −0.36 | −0.22 | |
DM | −0.63 | −0.43 | −0.84 | 0.33 | 0.64 | −0.15 | 0.09 | 0.11 | 0.59 | −0.58 | −0.75 | −0.30 | |
CC | 0.89 ** | 0.84 ** | 0.65 ** | 0.52 ns | 0.44 ns | 0.13 ns | 0.88 ** | 0.82 ** | 0.68 ** | 0.55 ns | 0.36 ns | 0.22 ns | |
DF | 42 | 30 | 20 | 12 | 6 | 2 | 42 | 30 | 20 | 12 | 6 | 2 | |
x2 | 203.2 | 121.8 | 58.0 | 28.9 | 12.5 | 0.9 | 201.9 | 121.4 | 62.2 | 29.4 | 10.3 | 2.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamphorst, S.H.; Gonçalves, G.M.B.; Amaral Júnior, A.T.d.; Lima, V.J.d.; Leite, J.T.; Schmitt, K.F.M.; Santos Junior, D.R.d.; Santos, J.S.; Oliveira, F.T.d.; Corrêa, C.C.G.; et al. Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations. Agronomy 2020, 10, 1519. https://doi.org/10.3390/agronomy10101519
Kamphorst SH, Gonçalves GMB, Amaral Júnior ATd, Lima VJd, Leite JT, Schmitt KFM, Santos Junior DRd, Santos JS, Oliveira FTd, Corrêa CCG, et al. Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations. Agronomy. 2020; 10(10):1519. https://doi.org/10.3390/agronomy10101519
Chicago/Turabian StyleKamphorst, Samuel Henrique, Gabriel Moreno Bernardo Gonçalves, Antônio Teixeira do Amaral Júnior, Valter Jário de Lima, Jhean Torres Leite, Kátia Fabiane Medeiros Schmitt, Divino Rosa dos Santos Junior, Juliana Saltires Santos, Fábio Tomaz de Oliveira, Caio Cézar Guedes Corrêa, and et al. 2020. "Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations" Agronomy 10, no. 10: 1519. https://doi.org/10.3390/agronomy10101519
APA StyleKamphorst, S. H., Gonçalves, G. M. B., Amaral Júnior, A. T. d., Lima, V. J. d., Leite, J. T., Schmitt, K. F. M., Santos Junior, D. R. d., Santos, J. S., Oliveira, F. T. d., Corrêa, C. C. G., Rodrigues, W. P., & Campostrini, E. (2020). Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations. Agronomy, 10(10), 1519. https://doi.org/10.3390/agronomy10101519