Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Sample Dimensions
2.3. Tensile and Compression Strength
2.4. Split Hopkinson Pressure Bar (SHPB)
2.5. Drop-Ball Test
2.6. Abrasion Resistance
2.7. Absorption and Solubility
2.8. Statistical Analysis
3. Results
3.1. Tensile Strength
3.2. Split Hopkinson Pressure Bar
3.3. Drop-Ball Test
3.4. Abrasion Resistance
3.5. Absorption and Solubility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tensile Test | Dynamic Testing—Split Hopkinson Pressure Bar |
---|---|
lT = 150 mm l0 = 50 mm h = 4 mm d = 10 mm b = 20 mm R = 60 mm | Φ1 = 8 mm h1 = 4 mm Φ2 = 6 mm h2 = 3 mm |
Abrasion Resistance | Drop-Ball Test |
h = 10 mm Φ = 50 mm | h = 3 mm Φ = 50 mm |
Sorption and Solubility | |
h = 1.5 mm Φ = 60 mm |
References
- Fernandes, L.M.; Neto, J.C.L.; Lima, T.F.R.; Magno, M.B.; Santiago, B.M.; Cavalcanti, Y.W.; de Almeida, L.F.D. The use of mouthguards and prevalence of dento-alveolar trauma among athletes: A systematic review and meta-analysis. Dent. Traumatol. 2019, 35, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Allison, P.; Tamimi, F. Mouthguards should be worn in contact sports. Br. J. Sports Med. 2020, 54, 1016–1017. [Google Scholar] [CrossRef] [PubMed]
- Bruggesser, S.; Kühl, S.; Solakoglu, Ö.; Filippi, A. The prevalence of orofacial injuries in judo: A cross-sectional study. Dent. Traumatol. 2020, 36, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Kumamoto, D.; Yagi, K.; Ikebe, K. Effectiveness and fabrication of mouthguards. Dent. Traumatol. 2009, 25, 556–564. [Google Scholar] [CrossRef]
- Firmiano, T.C.; de Oliveira, A.A.; de Moura Costa, P.V.; Cardoso, L.S.; Pereira, R.D.; Verissimo, C. Influence of different ethylene-vinyl acetate brands used for custom-fitted mouthguard fabrication on the stress and strain during an impact. Dent. Traumatol. 2022, 38, 431–438. [Google Scholar] [CrossRef]
- Gawlak, D.; Mańka-Malara, K.; Mierzwińska-Nastalska, E.; Waśniewski, B.; Ryszkowska, J. Comparison of hardness, energy absorption and water absorbability of polymeric materials used in the manufacture of mouthguards. Dent. Med. Probl. 2015, 52, 78–85. [Google Scholar]
- Gawlak, D.; Mańka-Malara, K.; Mierzwińska-Nastalska, E.; Gieleta, R.; Kamiński, T.; Łuniewska, M. A comparison of impact force reduction by polymer materials used for mouthguards fabrication. Acta Bioeng. Biomech. 2017, 19, 89–95. [Google Scholar]
- Trzaskowski, M.; Mańka-Malara, K.; Szczesio-Włodarczyk, A.; Sokołowski, J.; Kostrzewa-Janicka, J.; Mierzwińska-Nastalska, E. Evaluation of mechanical properties of 3D-printed polymeric materials for possible application in mouthguards. Polymers 2023, 15, 898. [Google Scholar] [CrossRef]
- Westerman, B.; Stringfellow, P.M.; Eccleston, J.A. EVA mouthguards: How thick should they be? Dent. Traumatol. 2002, 18, 24–27. [Google Scholar] [CrossRef]
- Mizuhashi, F.; Koide, K. Appropriate fabrication method for pressure-formed mouthguards using ethylene vinyl acetate sheets. Dent. Traumatol. 2018, 34, 46–50. [Google Scholar] [CrossRef]
- Verissimo, C.; Costa, P.V.; Santos-Filho, P.C.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Custom-fitted EVA mouthguards: What is the ideal thickness? A dynamic finite element impact study. Dent. Traumatol. 2016, 32, 95–102. [Google Scholar] [CrossRef]
- Kojima, I.; Takeda, T.; Nikajima, K.; Narimatsu, K.; Konno, M.; Ozawa, T.; Ishigami, K. Thinning factors influence on custom-made mouthguards thermoforming. Dent. Traumatol. 2015, 31, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Bando, Y. Prioritizing model trimming to prevent thinning during mouthguard thermoforming: Influence of increased height associated with an acute model angle. Dent. Traumatol. 2023, 39, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gawlak, D.; Mańka-Malara, K.; Kamiński, T. Assessment of the usage of custom mouthguards prepared using pressure injection—preliminary examination. Dent. Med. Probl. 2014, 51, 218–224. [Google Scholar]
- Gawlak, D.; Mierzwińska-Nastalska, E.; Mańka-Malara, K.; Kamiński, T. Comparison of usability properties of custom-made and standard self-adapted mouthguards. Dent. Traumatol. 2014, 30, 306–311. [Google Scholar] [CrossRef]
- Mańka-Malara, K.; Trzaskowski, M.; Mierzwińska-Nastalska, E. Dimensions of hybrid and nanohybrid mouthguards for mixed martial arts fighters–evaluation of new method of fabrication. Polymers 2022, 14, 5369. [Google Scholar] [CrossRef]
- Balhaddad, A.A.; Garcia, I.M.; Mokeem, L.; Alsahafi, R.; Majeed-Saidan, A.; Albagami, H.H.; Khan, A.S.; Ahmad, S.; Collares, F.M.; Bona, A.D.; et al. Three-dimensional (3D) printing in dental practice: Applications, area of interest, and level of evidence. Clin. Oral. Investig. 2023, 27, 2465–2481. [Google Scholar] [CrossRef]
- Bona, A.D.; Cantelli, V.; Britto, V.T.; Collares, K.F.; Stansbury, J.W. 3D printing restorative materials using a stereolithographic technique: A systematic review. Dent. Mater. 2021, 37, 336–350. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Alqutaibi, A.Y. 3D-printed intracoronal restorations, occlusal and laminate veneers: Clinical relevance, properties, and behaviour compared to milled restorations; a systematic review and meta-analysis. J. Esthet. Restor. Dent. 2024, 36, 1153–1170. [Google Scholar] [CrossRef]
- Ntovas, P.; Ladia, O.; Kois, J.C.; Rahiotis, C.; León-Revilla, M. Digital workflow for the fabrication of custom-fit additively manufactured sports mouthguards with balanced occlusion using an optical jaw tracking system: A dental technique. J. Prosthet. Dent. 2024, in press. [Google Scholar] [CrossRef]
- Kamenskikh, A.; Kuchumov, A.G.; Baradina, I. Modeling the contact interaction of a pair pf antagonist teeth through individual protective mouthguards of different geometric configuration. Materials 2021, 14, 7331. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Ye, H.; Lv, L.; Zhao, X.; Liu, Y.; Zhou, Y. Preliminary clinical application of complete workflow of digitally designed and manufactured sports mouthguards. Int. J. Prosthodont. 2020, 33, 99–104. [Google Scholar] [CrossRef]
- Chen, H.; Lin, C.H.; Hung, S.W.; Lee, S.Y.; Lin, Y.M. Effects of acetyl tributyl citrate on the mechanical properties, abrasion resistance, and cytotoxicity of the light-cured 3D printing polyurethane resins. 3D Print. Addit. Manuf. 2024, 16, e2014–e2021. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, T.; Togo, S.; Tsutsui, A.; Matsuda, Y.; Nakajima, K.; Takeda, T.; Fukuda, K.; Vallittu, P.; Lassila, L. Improving light-cured intermediate resin for hard and space mouthguard using a glass fiber. Dent. Traumatol. 2023, 39, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Arfi, Y.; Benoit, A.; Tapie, L.; Sandoz, B.; Persohn, S.; Attal, J.P.; Rignon-Bret, C. Comparison of shock absorption capacities of three types of mouthguards: A comparative in vitro study. Dent. Traumatol. 2024, 40, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Unkovskiy, A.; Huettig, F.; Kraemer-Fernandez, P.; Spintzyk, S. Multi-material 3D printing of a customized sports mouthguards: Proof-of-concept clinical case. Int. J. Environ. Res. Public Health 2021, 18, 12762. [Google Scholar] [CrossRef]
- Nasrollahzadeh, N.; Pioletti, D.P.; Broome, M. Design of customized mouthguards with superior protection using digital-based technologies and impact tests. Sports Med. Open 2024, 10, 64. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.S.; Jiang, H.B. A review of 3D printing in dentistry: Technologies, affecting factors and applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Barazanchi, A.; Li, K.C.; Al-Amleh, B.; Lyons, K.; Waddell, J.N. Additive technology: Update on current materials and applications in dentistry. J. Prosthodont. 2017, 26, 156–163. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Jaber Abed Ali, S.; Rahmatabadi, D.; Baghani, M.; Baniassadi, M. Experimental Evaluation of Mechanical Properties, Thermal Analysis, Morphology, Printability, and Shape Memory Performance of the Novel 3D Printed PETG-EVA Blends. Macromol. Mater. Eng. 2024, 309, 2400069. [Google Scholar]
- Garg, S.; Singh, A.; Murtaza, Q. Measuring the impact of infill pattern and infill density on the properties of 3D-Printed PLA via FDM. J. Mater. Eng. Perform. 2025. [Google Scholar] [CrossRef]
- Hamoud, M.; Elshalakany, A.B.; Gamil, M.; Mohamed, H. Investigating the influence of 3D printing parameters on the mechanical properties of FDM fabricated (PLA/Cu) composite material. Int. J. Adv. Manuf. Technol. 2024, 134, 3769–3785. [Google Scholar]
- ASTM D570; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 1998.
- McNair, O.D.; Gould, T.E.; Pilard, S.G.; Savin, D.A. Characterization of mouthguard materials: A comparison of a commercial material to a novel thiolene family. J. Appl. Polym. Sci. 2014, 131, 40402. [Google Scholar] [CrossRef]
- Gould, T.E.; Piland, S.G.; Shin, J.; Hoyle, C.E.; Nazarenko, S. Characterization of mouthguard materials: Physical and mechanical properties of commercialized products. Dent. Mater. 2009, 25, 771–780. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 527:1998; Tworzywa Sztuczne. Oznaczanie Właściwości Mechanicznych przy Statycznym Rozciąganiu. Polski Komitet Normalizacyjny: Poland, Warszaw, 1998.
- Chen, W.W. Experimental Methods for Characterizing Dynamic Response of Soft Materials. J. Dyn. Behav. Mater. 2016, 2, 2–14. [Google Scholar] [CrossRef]
- Tzibula, S.; Lovinger, Z.; Rittel, D. Dynamic tension of ductile polymers: Experimentation and modelling. Mech. Mater. 2018, 123, 30–41. [Google Scholar] [CrossRef]
- Bieler, S.; Weinberg, K. Signal Correction for the Split-Hopkinson Bar Testing of Soft Materials. Dynamics 2025, 5, 5. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, B.; Forrestal, M.J. A split Hopkinson bar technique for low-impedance materials. Exp. Mech. 1999, 39, 81–85. [Google Scholar] [CrossRef]
- Chen, W.; Lu, F. A technique for dynamic proportional multiaxial compression on soft materials. Exp. Mech. 2000, 40, 226–230. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Isaacs, J.B.; Starret, J.E. Hopkinson techniques for dynamic recovery experiments. Proc. R. Soc. Lond. 1991, 435, 371–391. [Google Scholar]
- Frew, D.J.; Forrestal, M.J.; Chen, W. Pulse shaping techniques for testing high-strength steel with a split Hopkinson pressure bar. Exp. Mech. 2005, 45, 186–195. [Google Scholar] [CrossRef]
- Fukasawa, S.; Churei, H.; Chowdhury, R.U.; Shirako, T.; Shahrin, S.; Shrestha, A.; Wada, T.; Uo, M.; Takahashi, H.; Ueno, T. Differences among shock-absorbing capabilities of mouthguard materials. Dent. Traumatol. 2016, 32, 474–479. [Google Scholar] [CrossRef]
- Riggins, A.W.; Dadmun, M.D. Multiple molecular-level processes in the evolution of residual strain in 3D Printed Poly (ether ether ketone). ACS Appl. Polym. Mater. 2024, 6, 4. [Google Scholar] [CrossRef]
- Riggins, A.W.; Dadmun, M.D. Controlling residual stress in material extrusion 3D printing through material formulation. Addit. Manuf. 2023, 73, 103678. [Google Scholar] [CrossRef]
- Hernandez, J.; Maynard, C. Finite strain sensing via additively manufactured CNF/TPU strain gauges. In Proceedings of the ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Austin, TX, USA, 11–13 September 2023. [Google Scholar] [CrossRef]
- Guo, W.; Ju, J.; Chen, C.; Fu, G. New insights into the effects of low temperatures on the stress-optical properties of printable photopolymers: An experimental investigation. Opt. Commun. 2024, 564, 130563. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Li, T.; Zhu, Z.; Zhou, H.; Peng, X.; Jiang, S. Tensile behavior of acrylonitrile butadiene styrene at different temperatures. Adv. Polym. Technol. 2020, 2020, 8946591. [Google Scholar] [CrossRef]
- Nassani, L.M.; Storts, S.; Novopoltseva, I.; Place, L.A.; Fogarty, M.; Schupska, P. Impact absorption power of polyefin fused filament fabrication 3D printed sports monuthguard: In vitro study. Dent. Traumatol. 2025, 41, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.; Lißner, M.; Towsend, D.; Petrinic, N.; Bergmann, J. Impact behaviour of 3D printed cellular structured for mouthguard application. Sci. Rep. 2022, 12, 4020. [Google Scholar] [CrossRef] [PubMed]
- Craft, D.Y.; Kry, S.F.; Balter, P.; Salehpour, M.; Woodward, W.; Howell, R.M. Material matters: Analysis of density of uncertainty in 3D printing and is consequences for radiation oncology. Med. Phys. 2018, 45, 1614–1621. [Google Scholar] [CrossRef]
- Reiff, C.; Sanchez, J.D.Z.; Mattison, L.M.; Iazzo, P.A.; Garcia, S.; Raveendran, G.; Gurevich, S. 3-Dimensional printing to predict paravalvular regurgitation after trancatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2020, 96, e703–e710. [Google Scholar]
- Nguyen, G.; Balasubramanian, T.H.; Shah, D.M.; Odolil, A.S.; Palmer, J.; Levin, M.R.; Swamy, R.; Alexander, J.L. Quality assessment of polymer materials for human model eye development. Int. Ophthalmol. 2023, 43, 3321–3328. [Google Scholar] [CrossRef]
- Robertson, F.M.; Couper, M.B.; Kinniburgh, M.; Monteith, Z.; Hill, G.; Pillai, S.A.; Adamson, D.J.A. Ninjaflex vs Superflab: A comparison of dosimetric properties, conformity to the skin surface, Planning Target Volume coverage and positional reproducibility for external beam radiotherapy. J. Appl. Clin. Med. Phys. 2021, 22, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Verissimo, C.; Santos-Filho, P.C.; Tantibirojn, D.; Versluis, A.; Soares, C.J. Modifying the biomechanical response of mouthguards with hard inserts: A finite element study. Am. J. Dent. 2015, 28, 116–120. [Google Scholar]
- Takeda, T.; Ishigami, K.; Handa, J.; Naitoh, K.; Kurokawa, K.; Shibusawa, M.; Nakajima, K.; Kawamura, S. Does hard insertion and space improve shock absorption ability of mouthguards? Dent. Traumatol. 2006, 22, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Ishigami, K.; Mishima, O.; Karasawa, K.; Kurokawa, K.; Kajima, T. Wasy fabrication of a new type of mouthguard incorporating a hard insert and space and offering improved shock absorption ability. Dent. Traumatol. 2011, 27, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Piva, A.M.; Kalman, L. Stress concentration of hybrid occlusal spint-mouthguard during a simulated maxillofacial traumatic impact: 3D-FEA. Dent. J. 2022, 10, 65. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wezgowiec, J.; Mikulewicz, M. Comparison of Two Chosen 3D Printing Resins Designed for Orthodontic Use: An In Vitro Study. Materials 2023, 16, 2237. [Google Scholar] [CrossRef]
- Motoyoshi, M.; Suzuki, H.; Churei, H.; Nakayama, T.; Yagi, T.; Sanjo, S.; Asano, T.; Tanimoto, Y.; Komiyama, O. Shock absorption and dispersion capacity of a novel five-layer mouthguard sheet material. Dent. Mater. J. 2024, 43, 367–374. [Google Scholar] [CrossRef]
- Takamata, T. Shock absorption characteristics of commertial custom-made mouthguards materials. Int. J. Sports Dent. 2009, 2, 62–71. [Google Scholar]
- Hoffman, J.; Alfter, G.; Rudolph, N.K.; Göz, G. Experimental comparative study of various mouthguards. Endod. Dent. Traumatol. 1999, 15, 157–163. [Google Scholar] [CrossRef]
- Tran, D.; Cooke, M.S.; Newsome, P.R. Laboratory evaluation of mouthguard material. Dent. Traumatol. 2001, 17, 260–265. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, J.; Gu, S.; Pan, P.; Hou, Y.; Xiong, H.; Tang, T.; Wu, Q.; Wu, J. Mouthguard based on the shear-stiffening effect: Excellent shock absorption ability with softness perception. ACS Appl. Mater. Interfaces 2023, 15, 53242–53250. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, R.; Tomita, R.; Ogawa, N.; Nakajima, K.; Takeda, T.; Uehara, H.; Yamanobe, T. Crystallization and hardening of poly(ethylene-co-vinyl acetate) mouthguards during routine use. Sci. Rep. 2017, 5, 44672. [Google Scholar] [CrossRef] [PubMed]
- Mańka-Malara, K.; Szerszeń, M.; Górski, B.; Tanabe, G.; Ueno, T.; Mierzwińska-Nastalska, E. Disinfection and isotonic drinks’ influence on hardness and color stability of ethylene vinyl acetate copolymer mouthguards used in martial arts: An in vitro study. Polymers 2023, 15, 1822. [Google Scholar] [CrossRef] [PubMed]
- Mańka-Malara, K.; Panasiewicz, P.; Kacprzyk, M.; Gawryszewska, M.; Mierzwińska-Nastalska, E.; Gawlak, D. The effects of decontamination procedures on elastic polymeric materials used in dental mouthguards fabrication. Acta Bioeng. Biomech. 2019, 19, 63–71. [Google Scholar] [CrossRef]
- Going, R.E.; Loehman, R.E.; Chan, M.S. Mouthguard materials: Their physical and mechanical properties. J. Am. Dent. Assoc. 1974, 89, 132–138. [Google Scholar] [CrossRef]
- Knapik, J.J.; Marshall, S.W.; Lee, R.B.; Darakjy, S.S.; Jones, S.B.; Mitchener, T.A.; delaCruz, G.G.; Jones, B.H. Mouthguards in sport activities: History, physical properties and injury prevention effectiveness. Sports Med. 2007, 37, 117–144. [Google Scholar] [CrossRef]
- Ingham, J.R.; Donati, G.L.; Douvris, L.; Bartzas, G.; Bussan, D.D.; Douvris, C. Commercially available mouthguards: Unearthing trace elements for the firts time. Sci. Total Environ. 2024, 930, 172790. [Google Scholar] [CrossRef]
- Roberts, H.W. Sports mouthguard overview: Materials, fabrication techniques, existing standards, and future research needs. Dent. Traumatol. 2023, 39, 101–108. [Google Scholar] [CrossRef]
Material | Copper PLActive | Spectrum Medical ABS | Braskem Bio EVA | DSM Arnitel ID 2045 | NinjaFlex (TPU) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Parameters | A | B | A | B | A | B | A | B | A | B |
Nozzle/print temperature—1st layer [°C] | 190–210 | 205 | 235–255 | 250 | 220–250 | 230 | 220–245 | 230 | 225–250 | 245 |
Nozzle/print temperature—subsequently layers [°C] | 190–210 | 200 | 235–255 | 245 | 220–250 | 230 | 220–245 | 230 | 225–250 | 240 |
Bed temperature [°C] | 0–60 | 50 | 100 | 110 | 20–40 | 30 | 40–60 | 80 | 50 | 50 |
Fan—first two layers [%] | ND | 0 | 0–25 | 0 | 50–100 | 0 | 0 | 0 | 0 | 0 |
Fan—subsequently layers [%] | ND | 100 | 0–25 | 15 | 50–100 | 0 | 0 | 0 | ND | 0 |
Layer thickness—1st layer [mm] | 0.1 | 0.15 | 0.05–0.30 | 0.15 | ND | 0.15 | >0.1 | 0.1 | ND | 0.15 |
Layer thickness—subsequently layers [mm] | 0.1 | 0.1 | 0.05–0.30 | 0.1 | ND | 0.1 | >0.1 | 0.15 | ND | 0.1 |
Print speed [mm/s]—infill|contour | 40–50 | 80|45 | 30–150 | 80|45 | 20–40 | 40|30 | ND | 40|40 | 15–35 | 30|30 |
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Copper 3D PLActive | 6 | 48.55 f | 1.13 | 47.20 | 50.40 |
ABS Medical Spectrum | 6 | 45.38 e | 0.44 | 44.80 | 45.90 |
DSM Arnitel ID 2045 | 6 | 11.47 b | 1.14 | 9.29 | 12.60 |
Braskem BIO EVA | 6 | 16.28 d | 1.05 | 14.40 | 17.10 |
NinjaFlex * | 6 | 14.60 c | 0.69 | 13.40 | 15.30 |
EVA Erkoflex * | 5 | 6.95 a | 0.43 | 6.45 | 7.59 |
F = 2488.110, p < 0.001 |
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Copper 3D PLActive | 6 | 48.55 d | 1.13 | 47.20 | 50.40 |
ABS Medical Spectrum | 6 | 34.93 c | 0.58 | 34.10 | 35.80 |
DSM Arnitel ID 2045 | 6 | 10.88 a | 1.00 | 8.96 | 11.80 |
Braskem BIO EVA | 6 | 15.50 b | 1.19 | 14.40 | 17.10 |
F = 1829.265, p < 0.001 |
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Copper 3D PLActive | 6 | 1711.67 b | 119.57 | 1600.00 | 1920.00 |
ABS Medical Spectrum | 6 | 1578.33 b | 142.89 | 1450.00 | 1780.00 |
DSM Arnitel ID 2045 | 6 | 50.60 a | 8.06 | 38.40 | 59.20 |
Braskem BIO EVA | 6 | 100.93 a | 3.30 | 97.60 | 106.00 |
NinjaFlex | 6 | 27.40 a | 1.98 | 24.10 | 29.40 |
EVA Erkoflex | 5 | 21.62 a | 2.44 | 18.80 | 25.50 |
F = 670.133, p < 0.001 |
Quasistatic Testing | Dynamic Testing | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
σ0.05 [MPA] | σ0.10 [MPA] | σ0.15 [MPA] | Compressive Modulus [GPa] | σ0.05 [MPA] | σ0.10 [MPA] | σ0.15 [MPA] | Compressive Modulus [GPa] | |||||||||
RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | |
Spectrum medical ABS | 64 | 47 | 64 | 47 | 68 | 49 | 1.5 | 1.5 | 83 | 79 | 107 | 102 | 112 | 111 | 1.3 | 1.2 |
Copper PLActive | 74 | 29 | 77 | 22 | 80 | 22 | 1.9 | 1.2 | 90 | 85 | 113 | 110 | 115 | 115 | 1.3 | 1.3 |
σ0.05 [MPA] | σ0.10 [MPA] | σ0.15 [MPA] | Compressive Modulus [MPa] | σ0.05 [MPA] | σ0.10 [MPA] | σ0.15 [MPA] | Compressive Modulus [MPa] | |||||||||
RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | RT | 50 °C | |
EVA Erkoflex (solid) | 1.4 | 0.4 | 3.9 | 1.0 | 6.3 | 1.7 | 28.5 | 7.3 | 4.1 | 1.9 | 7.5 | 3.8 | 10.5 | 5.3 | 50 | 24 |
Braskem Bio EVA | 0.7 | 0.7 | 6.1 | 3.1 | 10.5 | 5.4 | 18 | 14 | 12.8 | 7.7 | 19.3 | 17.4 | 25.0 | 21.5 | 173 | 132 |
NinjaFlex (TPE) | 0.7 | 0.6 | 2.4 | 1.7 | 4.3 | 3.1 | 13.5 | 11 | 2.1 | 1.6 | 4.6 | 3.5 | 7.1 | 5.6 | 27 | 20 |
DSM Arnitel ID 2045 | 1.3 | 1.3 | 5.7 | 4.0 | 9.4 | 6.7 | 28 | 27 | 4.3 | 3.5 | 13.1 | 9.3 | 20.5 | 14.8 | 73 | 49 |
1 | 2 | 3 | 4 | 5 | AVE | S.D | % | |
---|---|---|---|---|---|---|---|---|
Control | 708.1 | 727.7 | 739.4 | 696.4 | 743.0 | 722.9 | 20.1 | |
EVA Erkoflex | 410.3 | 399.8 | 411.6 | 415.9 | 419.7 | 411.5 | 7.5 | 56.9 |
Copper PLActive | 695.7 | 672.3 | 686.9 | 658.3 | 680.7 | 678.8 | 14.3 | 93.9 |
DSM Arnitel ID 2045 | 388.2 | 386.3 | 344.2 | 395.5 | 367.6 | 376.4 | 20.7 | 52.1 |
Braskem BIO EVA | 430.3 | 430.5 | 457.4 | 439.3 | 434.9 | 438.5 | 11.2 | 60.7 |
Spectrum Medical ABS | 646.0 | 676.5 | 701.9 | 718.2 | 703.5 | 689.2 | 28.4 | 95.3 |
NinjaFlex | 405.2 | 420.2 | 420.6 | 413.8 | 410.6 | 414.1 | 6.5 | 57.3 |
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Copper 3D PLActive | 3 | 0.089 a | 0.010 | 0.081 | 0.101 |
ABS Medical Spectrum | 3 | 0.129 a | 0.006 | 0.123 | 0.134 |
DSM Arnitel ID 2045 | 3 | 1.341 c | 0.080 | 1.263 | 1.424 |
Braskem BIO EVA | 4 | 0.568 b | 0.118 | 0.402 | 0.669 |
NinjaFlex | 3 | 1.951 d | 0.167 | 1.764 | 2.085 |
One Week | One Month | ||||
---|---|---|---|---|---|
N | Mean | SD | Mean | SD | |
Copper 3D PLActive | 5 | 1.197 ab | 0.145 | 1.563 b | 0.243 |
ABS Medical Spectrum | 5 | 1.015 ab | 0.010 | 1.099 ab | 0.028 |
DSM Arnitel ID 2045 | 5 | 0.194 a | 0.014 | 0.203 a | 0.018 |
Braskem BIO EVA | 5 | 1.676 bc | 1.242 | 1.610 b | 1.123 |
NinjaFlex | 5 | 2.700 c | 0.354 | 4.408 c | 0.357 |
EVA Erkoflex | 5 | 0.119 a | 0.008 | 0.27 a | 0.014 |
F = 15.367 p < 0.001 | F = 47.240 p < 0.001 |
N | M | SD | Min | Max | |
---|---|---|---|---|---|
Copper 3D PLActive | 5 | 0.001 a | 0.005 | −0.005 | 0.005 |
ABS Medical Spectrum | 5 | 0.005 a | 0.002 | 0.001 | 0.006 |
DSM Arnitel ID 2045 | 5 | −0.002 a | 0.013 | −0.011 | 0.013 |
Braskem BIO EVA | 5 | 0.002 a | 0.002 | 0.000 | 0.004 |
NinjaFlex | 5 | 0.347 b | 0.009 | 0.337 | 0.356 |
EVA Erkoflex | 5 | 0.007 a | 0.015 | −0.007 | 0.026 |
F = 1237.780, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzaskowski, M.; Tanabe, G.; Churei, H.; Ueno, T.; Ziętala, M.; Wysocki, B.; Sienkiewicz, J.; Szczesio-Włodarczyk, A.; Sokołowski, J.; Czochrowska, E.; et al. Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing. Polymers 2025, 17, 2190. https://doi.org/10.3390/polym17162190
Trzaskowski M, Tanabe G, Churei H, Ueno T, Ziętala M, Wysocki B, Sienkiewicz J, Szczesio-Włodarczyk A, Sokołowski J, Czochrowska E, et al. Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing. Polymers. 2025; 17(16):2190. https://doi.org/10.3390/polym17162190
Chicago/Turabian StyleTrzaskowski, Maciej, Gen Tanabe, Hiroshi Churei, Toshiaki Ueno, Michał Ziętala, Bartłomiej Wysocki, Judyta Sienkiewicz, Agata Szczesio-Włodarczyk, Jerzy Sokołowski, Ewa Czochrowska, and et al. 2025. "Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing" Polymers 17, no. 16: 2190. https://doi.org/10.3390/polym17162190
APA StyleTrzaskowski, M., Tanabe, G., Churei, H., Ueno, T., Ziętala, M., Wysocki, B., Sienkiewicz, J., Szczesio-Włodarczyk, A., Sokołowski, J., Czochrowska, E., Zadurska, M., Mierzwińska-Nastalska, E., Kostrzewa-Janicka, J., & Mańka-Malara, K. (2025). Physico-Mechanical Properties of 3D-Printed Filament Materials for Mouthguard Manufacturing. Polymers, 17(16), 2190. https://doi.org/10.3390/polym17162190