In Vitro Gastrointestinal Digestion of Corn-Oil-in-Water Pickering Emulsions: Influence of Lignin-Containing Cellulose Nanofibrils Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LCNFs
2.3. LCNF Characterization
2.4. Preparation of Pickering Emulsions
2.5. Simulated Gastrointestinal Tract Digestion Model and Free Fatty Acid Release
2.6. Emulsion Characterization
2.7. Statistical Analysis
3. Results and Discussion
3.1. LCNF Properties
3.1.1. Morphology
3.1.2. Interfacial Tension
3.1.3. LCNFs at Interfaces in Pickering Emulsions
3.2. Effect of LCNF Concentrations on Lipid Droplets during Digestion Stages
3.2.1. Evolution of Lipid Droplet Diameter and Distribution
3.2.2. The Zeta Potential of Emulsions
3.2.3. Free Fatty Acid (FFA) Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- GBD 2019 Risk Factors Collaborators. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Chen, S.; Dima, C.; Kharazmi, M.S.; Yin, L.; Liu, B.; Jafari, S.M.; Li, Y. The Colloid and Interface Strategies to Inhibit Lipid Digestion for Designing Low-Calorie Food. Adv. Colloid Interface Sci. 2023, 321, 103011. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Sohal, I.S.; Lorente, L.R.; Molina, R.M.; Pyrgiotakis, G.; Stevanovic, A.; Zhang, R.; McClements, D.J.; Geitner, N.K.; Bousfield, D.W.; et al. Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano 2018, 12, 6469–6479. [Google Scholar] [CrossRef]
- Li, X.; Kuang, Y.; Jiang, Y.; Dong, H.; Han, W.; Ding, Q.; Lou, J.; Wang, Y.; Cao, T.; Li, J.; et al. In Vitro Gastrointestinal Digestibility of Corn Oil-in-Water PICKERING Emulsions Stabilized by Three Types of Nanocellulose. Carbohydr. Polym. 2022, 277, 118835. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Li, Y.; Li, B.; Pei, Y.; Liu, S. Effects of the Interaction between Bacterial Cellulose and Soy Protein Isolate on the Oil-Water Interface on the Digestion of the Pickering Emulsions. Food Hydrocoll. 2022, 126, 107480. [Google Scholar] [CrossRef]
- Chang, Y.; McClements, D.J. Influence of Emulsifier Type on the In Vitro Digestion of Fish Oil-in-Water Emulsions in the Presence of an Anionic Marine Polysaccharide (Fucoidan): Caseinate, Whey Protein, Lecithin, or Tween 80. Food Hydrocoll. 2016, 61, 92–101. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Shi, J. Novel Pickering Emulsion Stabilized by Glycated Casein Embedding Curcumin: Stability, Bioaccessibility and Antioxidant Properties. LWT 2024, 194, 115796. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Liu, Y.; Liu, L.; Yu, J.; Fan, Y. In Vitro Digestion Properties of Different Chitin Nanofibrils Stabilized Lipid Emulsions. Food Hydrocoll. 2023, 139, 108512. [Google Scholar] [CrossRef]
- Winuprasith, T.; Khomein, P.; Mitbumrung, W.; Suphantharika, M.; Nitithamyong, A.; McClements, D.J. Encapsulation of Vitamin D3 in Pickering Emulsions Stabilized by Nanofibrillated Mangosteen Cellulose: Impact on In Vitro Digestion and Bioaccessibility. Food Hydrocoll. 2018, 83, 153–164. [Google Scholar] [CrossRef]
- Liu, W.; Pang, B.; Zhang, M.; Lv, J.; Xu, T.; Bai, L.; Cai, X.M.; Yao, S.; Huan, S.; Si, C. Pickering Multiphase Materials Using Plant-Based Cellulosic Micro/Nanoparticles. Aggregate 2024, 5, e486. [Google Scholar] [CrossRef]
- Bertolo, M.R.V.; Brenelli de Paiva, L.B.; Nascimento, V.M.; Gandin, C.A.; Neto, M.O.; Driemeier, C.E.; Rabelo, S.C. Lignins from Sugarcane Bagasse: Renewable Source of Nanoparticles as Pickering Emulsions Stabilizers for Bioactive Compounds Encapsulation. Ind. Crops Prod. 2019, 140, 111591. [Google Scholar] [CrossRef]
- Bai, L.; Lv, S.; Xiang, W.; Huan, S.; McClements, D.J.; Rojas, O.J. Oil-in-Water Pickering Emulsions via Microfluidization with Cellulose Nanocrystals: 2. In Vitro Lipid Digestion. Food Hydrocoll. 2019, 96, 709–716. [Google Scholar] [CrossRef]
- Day, L.; Golding, M.; Xu, M.; Keogh, J.; Clifton, P.; Wooster, T.J. Tailoring the Digestion of Structured Emulsions Using Mixed Monoglyceride–Caseinate Interfaces. Food Hydrocoll. 2014, 36, 151–161. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Zhu, J.Y. Morphological and Rheological Properties of Cellulose Nanofibrils Prepared by Post-Fibrillation Endoglucanase Treatment. Carbohydr. Polym. 2022, 295, 119885. [Google Scholar] [CrossRef]
- Gong, R.; Liu, C.; Wu, M.; Tian, R.; Yu, G.; Luo, X.; Li, B.; Peng, F.; Tang, Y. Efficient Fractionation of Pure Hemicellulose with High DP from Bleached Hardwood Pulp Using LiBr·3H2O and Co-Production of Dissolving Pulp. Green Chem. 2024, 26, 4622–4632. [Google Scholar] [CrossRef]
- Chen, Q.-H.; Liu, T.-X.; Tang, C.-H. Tuning the Stability and Microstructure of fine Pickering Emulsions Stabilized by Cellulose Nanocrystals. Ind. Crops Prod. 2019, 141, 111733. [Google Scholar] [CrossRef]
- Huan, S.; Zhu, Y.; Xu, W.; McClements, D.J.; Bai, L.; Rojas, O.J. Pickering Emulsions via Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Appl. Mater. Interfaces 2021, 13, 12581–12593. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Zhu, Y.; Chu, G.; McClements, D.J.; Rojas, O.J. Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annu. Rev. Food. Sci. Technol. 2020, 12, 383–406. [Google Scholar] [CrossRef]
- Tzoumaki, M.V.; Moschakis, T.; Scholten, E.; Biliaderis, C.G. In Vitro Lipid Digestion of Chitin Nanocrystal Stabilized o/w Emulsions. Food Funct. 2013, 4, 121–129. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Maiti, P.; Han, S.S. Lignin-Containing Nanocelluloses (LNCs) as Renewable and Sustainable Alternatives: Prospects, and Challenges. Curr. Opin. Green Sustain. Chem. 2023, 41, 100830. [Google Scholar] [CrossRef]
- Liu, K.; Du, H.; Zheng, T.; Liu, W.; Zhang, M.; Liu, H.; Zhang, X.; Si, C. Lignin-Containing Cellulose Nanomaterials: Preparation and Applications. Green Chem. 2021, 23, 9723–9746. [Google Scholar] [CrossRef]
- Solala, I.; Iglesias, M.C.; Peresin, M.S. On the Potential of Lignin-Containing Cellulose Nanofibrils (LCNFs): A Review on Properties and Applications. Cellulose 2019, 27, 1853–1877. [Google Scholar] [CrossRef]
- Yang, X.; Biswas, S.K.; Han, J.; Tanpichai, S.; Li, M.C.; Chen, C.; Zhu, S.; Das, A.K.; Yano, H. Surface and Interface Engineering for Nanocellulosic Advanced Materials. Adv. Mater. 2021, 33, e2002264. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Feng, X.; Ma, L.; Zhang, Y.; Dai, H. Lignocellulose Nanocrystals from Pineapple Peel: Preparation, Characterization and Application as Efficient Pickering Emulsion Stabilizers. Food Res. Int. 2021, 150 Pt A, 110738. [Google Scholar] [CrossRef]
- Farooq, M.; Zou, T.; Riviere, G.; Sipponen, M.H.; Osterberg, M. Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. Biomacromolecules 2019, 20, 693–704. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguie-Beghin, V.; Molinari, M. Atomic Force Microscopy Reveals How Relative Humidity Impacts the Young’s Modulus of Lignocellulosic Polymers and Their Adhesion with Cellulose Nanocrystals at the Nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Kuang, Y.; Liao, J.; Liu, K.; Li, J.; Mo, L.; He, S.; Zhu, W.; Song, J.; et al. Residual Lignin in Cellulose Nanofibrils Enhances the Interfacial Stabilization of Pickering Emulsions. Carbohydr. Polym. 2021, 253, 117223. [Google Scholar] [CrossRef]
- Huang, L.; Xu, C.; Gao, W.; Rojas, O.J.; Jiao, W.; Guo, S.; Li, J. Formulation and Stabilization of High Internal Phase Emulsions via Mechanical Cellulose Nanofibrils/Ethyl Lauroyl Arginate Complexes. Carbohydr. Polym. 2024, 324, 121541. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. Infogest Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, Y.; Xu, W.; Huan, S.; Li, J.; Song, T.; Bai, L.; Rojas, O.J. Heteroaggregation Effects on Pickering Stabilization Using Oppositely Charged Cellulose Nanocrystal and Nanochitin. Carbohydr. Polym. 2023, 299, 120154. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Bai, L.; Li, J.; Bi, R.; Huan, S.; Rojas, O.J. Depletion Effects and Stabilization of Pickering Emulsions Prepared from a Dual Nanocellulose System. ACS Sustain. Chem. Eng. 2022, 10, 9066–9076. [Google Scholar] [CrossRef]
- Chevalier, R.C.; Oliveira Junior, F.D.; Cunha, R.L. Modulating Digestibility and Stability of Pickering Emulsions Based on Cellulose Nanofibers. Food. Res. Int. 2024, 178, 113963. [Google Scholar] [CrossRef]
- Zhai, Z.; Ye, S.; Yan, X.; Song, Z.; Shang, S.; Rao, X. Ultra-Stable Soybean Oil-in-Water Emulsions Stabilized by a Polymeric Surfactant Derived from Soybean Oil. Ind. Crops Prod. 2021, 160, 113093. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, M.; Yang, Z.; Bai, L.; Huan, S.; Wang, C. Sustainable Production of Stable Lignin Nanoparticle-Stabilized Pickering Emulsions via Cellulose Nanofibril-Induced Depletion Effect. ACS Sustain. Chem. Eng. 2023, 11, 9132–9142. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Xiang, W.; Rojas, O.J. Pickering Emulsions by Combining Cellulose Nanofibrils and Nanocrystals: Phase Behavior and Depletion Stabilization. Green Chem. 2018, 20, 1571–1582. [Google Scholar] [CrossRef]
- Jiao, W.; Li, L.; Yu, A.; Zhao, D.; Sheng, B.; Aikelamu, M.; Li, B.; Zhang, X. In Vitro Gastrointestinal Digestibility of Crystalline Oil-in-Water Emulsions: Influence of Fat Crystal Structure. J. Agric. Food Chem. 2019, 67, 927–934. [Google Scholar] [CrossRef]
- Wan, L.; Li, L.; Harro, J.M.; Hoag, S.W.; Li, B.; Zhang, X.; Shirtliff, M.E. In Vitro Gastrointestinal Digestion of Palm Olein and Palm Stearin-in-Water Emulsions with Different Physical States and Fat Contents. J. Agric. Food Chem. 2020, 68, 7062–7071. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606. [Google Scholar] [CrossRef]
- Sarkar, A.; Goh, K.K.T.; Singh, H. Colloidal Stability and Interactions of milk-Protein-Stabilized Emulsions in an Artificial Saliva. Food Hydrocoll. 2009, 23, 1270–1278. [Google Scholar] [CrossRef]
- Zhang, K.; Shen, R.; Zhang, Y.; Tian, X.; Wang, W. Modulating In Vitro Gastrointestinal Digestion of Nanocellulose-Stabilized Pickering Emulsions by Altering Particle Surface Charge. Food Chem. 2024, 434, 137521. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Decker, E.A.; McClements, D.J. Influence of Initial Emulsifier Type on Microstructural Changes Occurring in Emulsified Lipids during In Vitro Digestion. Food Chem. 2009, 114, 253–262. [Google Scholar] [CrossRef]
- Singh, H. Aspects of Milk-Protein-Stabilised Emulsions. Food Hydrocoll. 2011, 25, 1938–1944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, L.; Li, J.; Liao, J.; Li, B.; Jiao, W.; Guo, S. In Vitro Gastrointestinal Digestion of Corn-Oil-in-Water Pickering Emulsions: Influence of Lignin-Containing Cellulose Nanofibrils Loading. Polymers 2024, 16, 2648. https://doi.org/10.3390/polym16182648
Wang L, Liu L, Li J, Liao J, Li B, Jiao W, Guo S. In Vitro Gastrointestinal Digestion of Corn-Oil-in-Water Pickering Emulsions: Influence of Lignin-Containing Cellulose Nanofibrils Loading. Polymers. 2024; 16(18):2648. https://doi.org/10.3390/polym16182648
Chicago/Turabian StyleWang, Langhong, Lin Liu, Jun Li, Jianming Liao, Bin Li, Wenjuan Jiao, and Shasha Guo. 2024. "In Vitro Gastrointestinal Digestion of Corn-Oil-in-Water Pickering Emulsions: Influence of Lignin-Containing Cellulose Nanofibrils Loading" Polymers 16, no. 18: 2648. https://doi.org/10.3390/polym16182648
APA StyleWang, L., Liu, L., Li, J., Liao, J., Li, B., Jiao, W., & Guo, S. (2024). In Vitro Gastrointestinal Digestion of Corn-Oil-in-Water Pickering Emulsions: Influence of Lignin-Containing Cellulose Nanofibrils Loading. Polymers, 16(18), 2648. https://doi.org/10.3390/polym16182648