Advances of the Holographic Technique to Test the Basic Properties of the Thin-Film Organics: Refractivity Change and Novel Mechanism of the Nonlinear Attenuation Prediction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The refractive properties of organic materials, especially nanostructured ones, can be effectively studied using a holographic technique. This approach permits finding the refractive index change at different spatial frequencies and can separate the mechanisms responsible for the nonlinear optical feature modifications. Novel data have been obtained for the organics studied, when the fullerenes, shungites, nanotubes, and the graphene oxide nanoparticles have been added.
- The laser-induced refractive index of the nanostructured organic materials is larger than that obtained for pure materials. Really, the values of the induced refractive index are two orders of magnitude higher than those obtained for pure films. It can be explained by the formation of the intermolecular charge transfer process that can add an additional mechanism to the laser-matter interaction. The polarizability of the treated system, indicated via an increase of the local volume polarizability χ(3), can increase as well.
- The laser-induced refractive index of the nanostructured organic materials obtained at the Raman–Nath diffraction condition can predict larger nonlinear optical coefficients, which are close to or larger than the same value established by different scientific teams for the classical volumetric inorganic structures. The estimated nonlinear refraction coefficient, n2, and the third order susceptibility, χ(3), can be found to be close to the values, respectively: ~10−8–10−7 cm2kW−1 and ~10−10–10−9 esu for thin conjugated films of the doped structures.
- The obtained laser-induced refractive index of the nanostructured organic materials can reveal the existing novel mechanics of the attenuation of the laser beam, namely, energy loss via diffraction, which can be added to the optical limiting process explanation. Moreover, the 3D local media can be created that can be useful to create devices with high-density recording of optical information.
- Among other processes, doping organics with different nano-objects can be considered as the creation of the Janus particles due to a drastic shift (displacement) of charge from the intramolecular donor fragment to the intermolecular acceptors. It is first proposed in this research to form the Janus nanoparticles via the displacement of charge in the doped organics. This shift of charge depends on the relation between the intramolecular electron affinity energy and the electron affinity energy of the particles, used for the doping.
- The studied nanostructured materials can be considered for fundamental discussion in the material science area and can be proposed for a wide range of applications: in holography, display, modulation, conversion, and limiting of the laser beam, sensors and biomedicine.
- The results shown can be involved in student education in universities due to the reason that the procedure to develop the thin-film organics structures and test them via a holographic set-up is a well-visualized process.
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenham, N.C.; Peng, X.I.; Alivisatos, A.P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628–17637. [Google Scholar] [CrossRef] [PubMed]
- Kamanina, N.V. The Effect of the Charge Transfer Pathway during Intermolecular Complex Formation on Nonlinear Optical and Photoconducting Properties of Nanocomposites. Tech. Phys. Lett. 2012, 38, 114–117. [Google Scholar] [CrossRef]
- Seokgyu, R.; Hyunwoo, O.; Jooheon, K. Facile Liquid-Exfoliation Process of Boron Nitride Nanosheets for Thermal Conductive Polyphthalamide Composite. Polymers 2019, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jin, J.; Hu, P.; Li, J.; Zeng, Z.; Li, Q.; Liu, J.; Chen, M.; Zhang, Z.; Wang, L.; et al. Sensitivity-Enhancing Modified Holographic Photopolymer of PQ/PMMA. Polymers 2024, 16, 1484. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Hu, X.; Zhao, X.; Yin, J. Electrorheological Effect of Suspensions of Polyaniline Nanoparticles with Different Morphologies. Polymers 2023, 15, 4568. [Google Scholar] [CrossRef]
- Sansul, S.; Yousif, E.; Ahmed, D.S.; El-Hiti, G.A.; Kariuki, B.M.; Hashim, H.; Ahmed, A. Pendant Modification of Poly(methyl methacrylate) to Enhance Its Stability against Photoirradiation. Polymers 2023, 15, 2989. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Jiang, P.; Li, C. The Elastic Modulus and Damage Stress–Strain Model of Polypropylene Fiber and Nano Clay Modified Lime Treated Soil under Axial Load. Polymers 2022, 14, 2606. [Google Scholar] [CrossRef]
- Van-Tho, H.; Thanh-Nhut, P.; Young-Jin, Y. Mechanical properties of coconut trunk particle/polyester composite based on alkali treatment. Adv. Compos. Lett. 2020, 29, 1–6. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef]
- Matamoros-Ambrocio, M.; Sánchez-Mora, E.; Gómez-Barojas, E. Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methylmethacrylate) Composites. Polymers 2023, 15, 2624. [Google Scholar] [CrossRef]
- Yoshimasa, S.; Osamu, H.; Sadao, K.; Mitsuru, U.; Takashi, F.; Hiro, M. Synthesis and Characterization of New Polyimide for Second-order Nonlinear Optics. J. Photopolym. Sci. Technol. 1998, 11, 217–224. [Google Scholar]
- Belousova, I.M.; Belousov, V.P.; Danilov, O.B.; Grigor’ev, V.A.; Kalintsev, A.G.; Zgonnik, V.N.; Kamanina, N.V.; Zhevlakov, A.P.; Kris’ko, A.V.; Mironova, N.G.; et al. Photodynamics of nonlinear fullerene-containing media. Proc. SPIE 2001, 4353, 75–83. [Google Scholar]
- Kamanina, N.V. Charge transfer complex influence on spectral, photoconductive, and nonlinear optical properties of π-conjugated systems doped with fullerenes. Proc. SPIE 2004, 5479, 211–217. [Google Scholar]
- Kamanina, N.V. Fullerene-dispersed liquid crystal structure: Dynamic characteristics and self-organization processes. Phys.—Uspekhi 2005, 48, 419–427. [Google Scholar] [CrossRef]
- Kamanina, N.V. Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials 2022, 15, 2153. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, K.; Tada, R.; Ishikawa, M.; Yoshino, K. Effect of C60 doping on electrical and optical properties of poly[(disilanylene)oligophenylenes]. Jpn. J. Appl. Phys. 1997, 36, L372–L375. [Google Scholar]
- Wang, Y.; Holden, J.M.; Rao, A.M.; Eklund, P.C.; Venkateswaran, U.D.; Eastwood, D.; Lidberg, R.L.; Dresselhaus, G.; Dresselhaus, M.S. Optical absorption and photoluminescence in pristine and photopolymerized C60 solid films. Phys. Rev. B 1995, 51, 4547–4556. [Google Scholar] [CrossRef]
- Itaya, A.; Sizzuki, I.; Tsuboi, Y.; Miyasaaka, H. Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis. J. Phys. Chem. B 1997, 101, 5118–5123. [Google Scholar] [CrossRef]
- Ermilov, E.A.; Al-Omari, S.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B. Photophysical properties of fullerene-dendronpyropheophorbide supramolecules. Chem. Phys. 2004, 301, 27–31. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Kochaev, A.I. Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties. Polymers 2024, 16, 1580. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125. [Google Scholar] [CrossRef]
- Kondawar, S.B.; Anwane, S.W.; Nandanwar, D.V.; Dhakate, S.R. Carbon nanotubes reinforced conducting polyaniline and its derivative poly(o-anisidine) composites. Adv. Mat. Lett. 2013, 4, 35–38. [Google Scholar] [CrossRef]
- Lanlan, Y.; Mei, L.; Yunqiang, Z.; Kaihua, Y.; Jingyun, M.; Yingkai, L. Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance. J. Mater. Sci. Mater. Electron. 2014, 25, 1047–1052. [Google Scholar] [CrossRef]
- Rossella, A.; Giulio, M. Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Materials 2020, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Galyaltdinov, S.; Lounev, I.; Khamidullin, T.; Hashemi, S.A.; Nasibulin, A.; Dimiev, A.M. High Permittivity Polymer Composites on the Basis of Long Single-Walled Carbon Nanotubes: The Role of the Nanotube Length. Nanomaterials 2022, 12, 3538. [Google Scholar] [CrossRef]
- Lu, H.; Joy, J.; Gaspar, R.L.; Bradforth, S.E.; Brutchey, R.L. Iodide-Passivated Colloidal PbS Nanocrystals Leading to Highly Efficient Polymer: Nanocrystal Hybrid Solar Cells. Chem. Mater. 2016, 28, 1897–1906. [Google Scholar] [CrossRef]
- Liu, S.H.; Qian, X.F.; Yin, J.; Xi, H.A.; Huang, Z.H.; Zhu, Z.K. Fabrication of CdS nanocrystals embedded in copolymer matrix by an in situ simultaneous copolymerization-sulfidation technique. Mater. Sci. Eng. 2003, B98, 99–103. [Google Scholar] [CrossRef]
- Kuan-Ju, W.; Kung-Ching, C.; Chih-Yu, C.; Yang-Fang, C.; Chih-Wei, L.; Chia-Cheng, K.; Chun-Yen, C.; Pi-Tai, C. CdS Nanorods Imbedded in Liquid Crystal Cells for Smart Optoelectronic Devices. Nano Lett. 2007, 7, 1908–1913. [Google Scholar] [CrossRef]
- Yihuai, L.; Jinhao, L.; Huaqing, X.; Yuanyuan, W.; Zhen, L. Raising the thermoelectric performance of PbS with low-content polyparaphenylene. J. Mater. Sci. Mater. Electron. 2020, 31, 6586–6592. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Al-Hmoud, M.; Rababah, T.M.; Marashdeh, M.W.; Aljaafreh, M.J.; Abu Alrub, S.; Binzowaimil, A.; Telfah, A. Synthesized PANI/CeO2 Nanocomposite Films for Enhanced Anti-Corrosion Performance. Nanomaterials 2024, 14, 526. [Google Scholar] [CrossRef]
- Dubey, N.; Chandra, S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. Biosensors 2024, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Kumar, A.; Rana, S.; Guadagno, L. An Overview on Carbon Fiber-Reinforced Epoxy Composites: Effect of Graphene Oxide Incorporation on Composites Performance. Polymers 2022, 14, 1548. [Google Scholar] [CrossRef] [PubMed]
- Valentino, P.; Osman, B.; Jincan, Z.; Sachin, M.S.; Adil, M.; Andrea, C.F.; Miriam, S.V. Mapping the complex refractive index of single layer graphene on semiconductor or polymeric substrates at terahertz frequencies. 2D Mater. 2022, 9, 025018. [Google Scholar] [CrossRef]
- Andonegi, M.; Correia, D.M.; Pereira, N.; Costa, C.M.; Lanceros-Mendez, S.; de la Caba, K.; Guerrero, P. Sustainable Collagen Composites with Graphene Oxide for Bending Resistive Sensing. Polymers 2023, 15, 3855. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.; Ornaghi, H.L., Jr.; Monticeli, F.M.; Romanzini, D. Effect of the Graphene Quantum Dot Content on the Thermal, Dynamic-Mechanical, and Morphological Properties of Epoxy Resin. Polymers 2023, 15, 4531. [Google Scholar] [CrossRef]
- Alam, M.N.; Kumar, V.; Jeong, T.; Park, S.-S. Nanocarbon Black and Molybdenum Disulfide Hybrid Filler System for the Enhancement of Fracture Toughness and Electromechanical Sensing Properties in the Silicone Rubber-Based Energy Harvester. Polymers 2023, 15, 2189. [Google Scholar] [CrossRef]
- Jiang, R.; Ma, Y.; Fan, Z.; Chen, Y.; Zheng, T.; Yu, R.; Liao, J. Design and Optimization of NR-Based Stretchable Conductive Composites Filled with MoSi2 Nanoparticles and MWCNTs: Perspectives from Experimental Characterization and Molecular Dynamics Simulations. Polymers 2024, 16, 1444. [Google Scholar] [CrossRef]
- Mochalova, A.E.; Koryagin, A.S.; Salomatina, E.V.; Dydykina, V.N.; Zotova, Y.D.; Smirnova, L.A. Anticancer Activity of Multicomponent Nanostructured System «Gold Nanoparticles-Apitoxin-Chitosan». J. Nanotechnol. Diagn. Treat. 2014, 2, 11–16. [Google Scholar] [CrossRef]
- Xiong, L.; Zhenbo, D.; Yuehong, Y.; Lijie, Z.; Denghui, X.; Yongsheng, W.; Feng, T. Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer. J. Mater. Sci. Mater. Electron. 2014, 25, 140–145. [Google Scholar] [CrossRef]
- Silipigni, L.; Salvato, G.; Torrisi, A.; Cutroneo, M.; Slepicka, P.; Fajstavr, D.; Torrisi, L. Pressure sensor based on porous polydimethylsiloxane with embedded gold nanoparticles. J. Mater. Sci. Mater. Electron. 2021, 32, 8703–8715. [Google Scholar] [CrossRef]
- Baha, T.C.; Kamil, H.L.; Firas, J.K.; Mohammad, A.H. Random Laser of R6G Dye and TiO2 Nanoparticles Doped in PMMA Polymer. Adv. Mater. Phys. Chem. 2011, 1, 20–25. [Google Scholar] [CrossRef]
- Capraru, O.-A.; Lungu, B.; Virgolici, M.; Constantin, M.; Cutrubinis, M.; Chirila, L.; Cinteza, L.O.; Stanculescu, I. Gamma Irradiation and Ag and ZnO Nanoparticles Combined Treatment of Cotton Textile Materials. Materials 2022, 15, 2734. [Google Scholar] [CrossRef] [PubMed]
- Joshua, L.M.; Christina, T.; Nancy, A.B.; Carl, D.S.; Saad, A.K. Rapidly dissolving poly(vinyl alcohol)/cyclodextrin electrospun nanofibrous membranes. RSC Adv. 2014, 4, 13274–13279. [Google Scholar] [CrossRef]
- Xuemiao, Z.; Lianyu, Z.; Xin, L.; Jinhua, L.; Xinxin, L.; Yuting, Z.; Dong, Z.; Shuhong, L.; Qingru, W. Large-area fluorescence enhancement of R6G based on a uniform PVA-Au plasmonic substrate. Opt. Express 2022, 30, 43281–43292. [Google Scholar] [CrossRef]
- Alhulw, H.A.; Sultan, A.; Iraqi, A.; Saad, S.A.; Taha Abdel Mohaymen, T. Dielectric relaxation investigations of polyester/CoFe2O4 composites. J. Mater. Sci. Mater. Electron. 2023, 34, 2132. [Google Scholar] [CrossRef]
- Wentao, H.; Hong, X.; Qihuang, G.; Yanyi, H.; Chunhui, H.; Jianzhuang, J. Large and ultrafast third-order optical nonlinearity of heteroleptic triple-decker (phthalocyaninato)(porphyrinato)Sm(III) complexes. Chem. Phys. Lett. 2003, 374, 639–644. [Google Scholar]
- Fuks-Janczarek, I.; Migalska-Zalas, A.; Dabos-Seignon, S.; Sahraoui, B.; Zoueu, T.J.; Kityk, I.V.; Roncali, J.; Martineau, C. Third-order nonlinear optical properties in new thiophene-based extended π-conjugated systems. Nonlinear Opt. Quantum Opt. Concepts Mod. Opt. 2004, 31, 269–275. [Google Scholar]
- Ronchi, A.; Cassano, T.; Tommasi, R.; Babudri, F.; Cardone, A.; Farinola, G.M.; Naso, F. χ(3) measurements in novel poly(2’, 5’-dioctyloxy-4,4’,4" terphenylenevinylene) using the Z-scan technique. Synth. Met. 2003, 139, 831–834. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Kamanina, N.V.; Kulagin, I.A.; Ryasnyansky, A.I.; Tugushev, R.I.; Usmanov, T. Study of nonlinear optical characteristics of various media by the methods of Z-scan and third harmonic generation of laser radiation. Quantum Electron. 2002, 32, 781–788. [Google Scholar] [CrossRef]
- Bushuk, S.; Douglas, W.; Kalvinkovskaya, Y.; Klapshina, L.; Rubinov, A.; Bushuk, B.; Stupak, A. Spectroscopic and nonlinear characteristics of anthracene-containing silicon-organic polymers in solution. J. Lumin. 2003, 105, 81–87. [Google Scholar] [CrossRef]
- Dorsinville, R.; Yang, L.; Alfano, R.R.; Zamboni, R.; Danieli, R.; Ruani, G.; Taliani, C. Nonlinear-optical response in polythiophene films using four-wave mixing techniques. Opt. Lett. 1989, 14, 1321–1323. [Google Scholar] [CrossRef] [PubMed]
- Moerner, W.E.; Grunnet-Jepsen, A.; Thompson, C.L. Photorefractive Polymers. Annu. Rev. Mater. Res. 1997, 27, 585–623. [Google Scholar] [CrossRef]
- Hadjichristov, G.B.; Kircheva, P.P. Optical four-wave mixing in bulk polymers. Appl. Phys. B 1992, 55, 373–377. [Google Scholar] [CrossRef]
- Antipov, O.L.; Afanasiev, A.V.; Domrachev, G.A.; Douglas, W.E.; Guy, D.M.H.; Klapshina, L.G.; Kuzhelev, A.S. Degenerate four-wave mixing measurements of the nonlinear response of conjugated silicon-ethynylene polymers. Proc. SPIE 1999, 3610. [Google Scholar] [CrossRef]
- Akhmanov, S.A.; Nikitin, S.Y. Physical Optics; Izdatelstvo of Moscow University: Moscow, Russia, 1998; 656p. (In Russian) [Google Scholar]
- Mingfei, D.; Ming, Z.; Shihan, H.; Yi, Z.; Long, Z.; Yi, W.; Haitao, C.; Zejie, Y.; Shiming, G.; Daoxin, D. High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the single mode regime. Opt. Express 2022, 30, 16362–16373. [Google Scholar] [CrossRef]
- Yoonjae, C.; Herve, H.; Seung-Mohong; Yongkeun, P. Fourier space aberration correction for high resolution refractive index imaging using incoherent light. Opt. Express 2024, 32, 18790–18799. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilenko, N.A. Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 1997, 29, 1–9. [Google Scholar] [CrossRef]
- Kamanina, N.V. Mechanisms of optical limiting in π-conjugated organic system: Fullerene-doped polyimide. Synth. Met. 2002, 127, 121–128. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.A.; Likhomanova, S.V.; Timonin, D.N.; Kuzhakov, P.V.; Rozhkova, N.N.; Kityk, I.V.; Plucinski, K.J.; Uskokovic, D.P. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J Mater Sci. Mater Electron. 2012, 23, 1538–1542. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Tse, D.S.; Malhotra, R.; Lorents, D.C. Solubility of C60 in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Uskokovic, D.P. Refractive Index of Organic Systems Doped with Nano-Objects. Mater. Manuf. Process. 2008, 23, 552–556. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Emandi, A.; Kajzar, F.; Attias, A.-J. Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures. Mol. Cryst. Liq. Cryst. 2008, 486, 1043–1053. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Plekhanov, A.I.; Serov, S.V.; Savinov, V.P.; Shalin, P.A.; Kajzar, F. Correlation Between Photoconductive and Nonlinear Optical Characteristics of Fullerene- and Nanotubes-Doped Organic Composites. Nonlinear Opt. Quantum Opt. 2010, 40, 307–317. [Google Scholar]
- Kamanina, N.V.; Shurpo, N.A.; Likhomanova, S.V.; Timonin, D.N.; Serov, S.V.; Barinov, O.V.; Vasilyev, P.Y.; Studeonov, V.I.; Rozhkova, N.N.; Vaganov, V.E.; et al. Features of the nanostructured composites. In Proceedings of the 10th Israeli-Russian Bi-National Workshop 2011 (“The Optimization of the Composition, Structure and Properties of Metals, Oxides, Composites, Nano- and Amorphous Materials”), Jerusalem, Israel, 20–23 June 2011; Israel Academy of Science and Humanities and the Russian Academy of Science: Jerusalem, Israel, 2011; pp. 77–85. [Google Scholar]
- Kamanina, N.V.; Vasilyev, P.Y.; Serov, S.V.; Savinov, V.P.; Bogdanov, K.Y.; Uskokovic, D.P. Nanostructured Materials for Optoelectronic Applications. Acta Phys. Pol. A 2010, 117, 786–790. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Rozhkova, N.N.; Chernozatonskii, L.A.; Shmidt, N.M.; Ferritto, R.; Kajzar, F. Influence of Nanostructuration Process on the Properties of Materials. Nonlinear Opt. Quantum Opt. 2012, 45, 153–160. [Google Scholar]
- Kamanina, N.V.; Plekhanov, A.I. Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules. Opt. Spectrosc. 2002, 93, 408–415. [Google Scholar] [CrossRef]
- Wen, J.; Gao, C.Y.; Yu, H.T.; Zhao, M.; Shang, J.J.; Li, X.L. Investigation on third-order nonlinear optical properties of undoped LiNbO3 by modified Z-scan technique. Appl. Phys. B 2017, 123, 85. [Google Scholar] [CrossRef]
- Duanliang, W.; Tingbin, L.; Shenglai, W.; Jiyang, W.; Zhengping, W.; Xinguang, X.; Fang, Z. Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 2016, 6, 14490–14495. [Google Scholar]
- Suvorov, V.S.; Sonin, A.S.; Rez, I.S. Some nuclear optical properties of crystals of the KDP group. Sov. Phys. JETP 1968, 26, 33–37. [Google Scholar]
- Kamanina, N.V. Peculiarities of optical limiting effect in π-conjugated organic systems based on 2-cyclooctylamino-5-nitropyridinedoped with C70. J. Opt. A Pure Appl. Opt. 2001, 3, 321–325. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Sheka, E.F. Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation. Opt. Spectrosc. 2004, 96, 599–612. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Kuzhakov, P.V.; Likhomanova, S.V.; Andraud, C.; Rau, I.; Kajzar, F. Photorefractive, Photoconductive, Dynamic Features and Interfaces of the Optical Materials Modified with Nanoobjects. Nonlinear Opt. Quantum Opt. 2014, 45, 283–292. [Google Scholar]
- Kamanina, N.V.; Serov, S.V.; Savinov, V.P. Photorefractive Properties of Nanostructured Organic Materials Doped with Fullerenes and Carbon Nanotubes. Tech. Phys. Lett. 2010, 36, 40–42. [Google Scholar] [CrossRef]
- Zyss, J.; Nicoud, J.F.; Coquillay, M. Chirality and hydrogen bonding in molecular crystal for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP). J. Chem. Phys. 1984, 81, 4160–4167. [Google Scholar] [CrossRef]
- Bosshard, C.; Sutter, K.; Günter, P.; Chapuis, G. Linear- and nonlinear-optical properties of 2-cyclooctylamino-5-nitropyridine. J. Opt. Soc. Am. 1989, B6, 721–725. [Google Scholar] [CrossRef]
- Lahajnar, G.; Zupančič, I.; Blinc, R.; Zidanšek, A.; Kind, R.; Ehrensperger, M. NMR self-diffusion study of organic glasses: COANP, MBANP, PNP, NPP. Z. Phys. B Condens. Matter 1994, B95, 243–247. [Google Scholar] [CrossRef]
- Seliger, J.; Zagar, V.; Blinc, R.; Arend, H.; Gunter, P. 14N quadrupole coupling in COANP. Chem. Phys. Lett. 1987, 142, 334–335. [Google Scholar] [CrossRef]
- Eich, M.; Looser, H.; Yoon, D.Y.; Twieng, R.; Bjorklund, G.; Baumert, J.C. Second-harmonic generation in poled organic monomeric glasses. J. Opt. Soc. Am. 1989, B6, 1590–1597. [Google Scholar] [CrossRef]
- Leyderman, A.; Cui, Y. Electro-optical characterization of a 2-cyclooctylamino-5-nitropyridine thin organic crystal film. Opt. Lett. 1998, 23, 909–1011. [Google Scholar] [CrossRef]
- Leyderman, A.; Cui, Y.; Penn, B.G. Electro-optical effects in thin single-crystalline organic films grown from the melt. J. Phys. D Appl. Phys. 1998, 31, 2711–2717. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, J.; Kamanina, N.; Pasaje, A.; Leyderman, A.; Barrientos, A.; Vlasse, M.; Penn, B.G. Dielectric study of dynamics of organic glasses. J. Phys. D Appl. Phys. 1999, 32, 3215–3221. [Google Scholar] [CrossRef]
- Kamanina, N.; Barrientos, A.; Leyderman, A.; Cui, Y.; Vikhnin, V.; Vlasse, M. Effect of fullerene doping on the absorption edge shift in COANP. Mol. Mater. 2000, 13, 275–280. [Google Scholar]
- Kamanina, N.V.; Vikhnin, V.S.; Leyderman, A.; Barrientos, A.; Cui, Y.; Vlasse, M. Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine. Opt. Spectrosc. 2000, 89, 369–371. [Google Scholar] [CrossRef]
- Vedeneyev, V.I.; Gurvich, L.V.; Kondrat’yev, V.N.; Medvedev, V.A.; Frankevich, Y.L. Bond Energies Ionization Potentials and Electron Affinities; St. Martin’s Press: New York, NY, USA, 1966. [Google Scholar]
- Gurevich, L.V.; Karachevtsev, G.V.; Kondrat’ev, V.N.; Lebedev, Y.A.; Medvedev, V.A.; Potapov, V.K.; Khodeev, Y.S. The Energy of Breaking Chemical Bonds, Ionization Potentials and Electron Affinity. 1974. (In Russian) [Google Scholar]
- Rumyantsev, B.M.; Berendyaev, V.I.; Vasilenko, N.A.; Malenko, S.V.; Kotov, B.V. Photogeneration of charge carriers in layers of soluble photoconducting polyimides sensitized by dyes. Polym. Sci. A 1997, 39, 506–512. [Google Scholar]
- Cherkasov, Y.A.; Kamanina, N.V.; Alexandrova, E.L.; Berendyaev, V.I.; Vasilenko, N.A.; Kotov, B.V. Polyimides: New properties of xerographic, thermoplastic, and liquid-crystal structures. Proc. SPIE 1998, 3471, 254–260. [Google Scholar] [CrossRef]
- Eletsky, A.V.; Smirnov, B.M. Claster C60—New form of carbon. Phys.—Uspekhi 1991, 161, 173–192. (In Russian) [Google Scholar]
- Eletsky, A.V.; Smirnov, B.M. Fullerenes. Phys.—Uspekhi 1993, 163, 33–60. (In Russian) [Google Scholar] [CrossRef]
- Eletsky, A.V.; Smirnov, B.M. Fullerenes and carbon structures. Phys.—Uspekhi 1995, 165, 977–1009. (In Russian) [Google Scholar]
- Kamanina, N. Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers 2023, 15, 2819. [Google Scholar] [CrossRef]
- Couris, S.; Koudoumas, E.; Ruth, A.A.; Leach, S. Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution. J. Phys. B At. Mol. Opt. Phys. 1995, 8, 4537–4554. [Google Scholar] [CrossRef]
- Belousov, V.P.; Belousova, I.M.; Budtov, V.P.; Danilov, V.V.; Danilov, O.B.; Kalintsev, A.G.; Mak, A.A. Structural, physical-chemical and nonlinear optical properties. Opt. J. 1997, 64, 3–37. [Google Scholar]
- Kamanina, N.V. Nonlinear optical study of fullerene-doped conjugated systems: New materials for nanophotonics applications. In Organic Nanophotonics; Springer: Dordrecht, The Netherlands, 2003; Volume 100, pp. 177–192. [Google Scholar]
- Sidorov, A.I. Fundamentals of photonics: Physical principles and methods optical signal conversion in photonics devices. In Educational and Methodical Manual; SPb ITMO Research Institute: St. Petersburg, Russia, 2014; 148p. (In Russian) [Google Scholar]
- Bagrov, I.V.; Zhevlakov, A.P.; Mikheeva, O.P.; Sidorov, A.I.; Sydarikov, V.V. Low-threshold limitation of infrared radiation in impurity semiconductors. Opt. J. 2002, 69, 15–20. [Google Scholar]
- Mikhailova, M.M.; Kosyreva, M.M.; Kamanina, N.V. On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett. 2002, 28, 450–453. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Bretonniere, Y.; Andraud, C. Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development. J. Nanomater. 2015, 2015, 278902. [Google Scholar] [CrossRef]
Structure Studied | k wt.% | W, J × cm−2 | Λ, mm−1 | τ, ns | Δni | Refs. |
---|---|---|---|---|---|---|
Pure PI | 0 | 0.6 | 90 | 20 | 10−4–10−5 | [62] |
PI+malachite green | 0.2 | 0.5–0.6 | 90–100 | 10–20 | 2.87 × 10−4 | [63] |
PI+QDs CdSe(ZnS) | 0.003 | 0.2–0.3 | 90–100 | 10 | 2.0 × 10−3 | [64] |
PI+QDs CdSe(ZnS) | 0.03 | 0.2 | 90–100 | 10 | 2.2 × 10−3 | [15] |
PI+shungite | 0.1 | 0.6 | 100 | 10 | 3.6 × 10−3 | [15] |
PI+shungite | 0.15 | 0.5 | 100 | 10 | 3.7 × 10−3 | c.d. * |
PI+shungite | 0.2 | 0.063–0.1 | 150 | 10 | (3.8–5.3) × 10−3 | [65] |
PI+C60 | 0.1 | 0.5 | 100 | 10 | 3.5 × 10−3 | c.d. |
PI+C60 | 0.2 | 0.5–0.6 | 90 | 10–20 | 4.2 × 10−3 | [62] |
PI+(C60+C70) | 0.2 | 0.5 | 100 | 10 | 4.4 × 10−3 | c.d. |
PI+C70 | 0.1 | 0.5 | 100 | 10 | 4.2×10−3 | c.d. |
PI+C70 | 0.2 | 0.6 | 90 | 10–20 | 4.68 × 10−3 | [62] |
PI+nanotubes | 0.1 | 0.5–0.8 | 90 | 10–20 | 5.7 × 10−3 | [62] |
PI+nanotubes | 0.05 | 0.3 | 150 | 10 | 4.5 × 10−3 | [66] |
PI+nanotubes | 0.1 | 0.3 | 150 | 10 | 5.5 × 10−3 | [66] |
PI+nanotubes | 0.15 | 0.5 | 100 | 10 | 5.6 × 10−3 | c.d. |
PI+DWCNT powder | 0.1 | 0.063–0.1 | 100 | 10 | 9.4 × 10−3 | [60] |
PI+DWCNT powder | 0.1 | 0.063–0.1 | 150 | 10 | 7.0 × 10−3 | [60] |
PI+carbon nanofibers | 0.1 | 0.6 | 90–100 | 10 | 11.7 × 10−3 | [65] |
PI+carbon nanofibers | 0.1 | 0.3–0.6 | 150 | 10 | 11.2 × 10−3 | [60] |
PI+carbon nanofibers | 0.1 | 0.1–0.3 | 90–100 | 10 | 12.0 × 10−3 | [65] |
PI+carbon nanofibers | 0.1 | 0.1 | 90 | 10 | 15.2 × 10−3 | [60] |
PI+RGrO | 0.1 | 0.2 | 100 | 10 | 3.4 × 10–3 | [67] |
PI+RGrO | 0.15 | 0.2 | 100 | 10 | 3.5 × 10–3 | c.d. |
PI+RGrO | 0.1 | 0.2 | 150 | 10 | 3.1 × 10–3 | [15] |
Structure Studied | k wt.% | W, J × cm−2 | Λ, mm−1 | τ, ns | Δni | Refs. |
---|---|---|---|---|---|---|
Pure COANP | 0.0 | 0.9 | 90 | 20 | ~10−5 | [62,72] |
COANP+C60 | 2.0 | 0.7 | 100 | 10 | 5.2 × 10−3 | c.d. * |
COANP+C60 | 5.0 | 0.9 | 90–100 | 10–20 | 6.21 × 10−3 | [62,73] |
COANP+C70 | 0.5 | 0.6 | 100 | 10–20 | (4.5–5.1) × 10−3 | [74] |
COANP+C70 | 2.0 | 0.7 | 100 | 10 | 5.4 × 10−3 | c.d. |
COANP+C70 | 5.0 | 0.9 | 90–100 | 10–20 | 6.89 × 10−3 | [62,73] |
Pure NPP | 0.0 | 0.3 | 100 | 20 | 0.65 × 10−3 | [75] |
NPP+C60 | 1.0 | 0.3 | 100 | 20 | 1.65 × 10−3 | [75] |
NPP+C70 | 1.0 | 0.3 | 100 | 20 | 1.20 × 10−3 | [75] |
Pure NPP | 0.0 | 0.7 | 100 | 10 | ~10−5 | c.d. |
NPP+C60 | 1.0 | 0.7 | 100 | 10 | 4.2 × 10−3 | c.d. |
NPP+C70 | 1.0 | 0.7 | 100 | 10 | 4.5 × 10−3 | c.d. |
Pure PNP | 0.0 | 0.3 | 100 | 20 | - | [75] |
PNP+C60 | 1.0 | 0.3 | 100 | 20 | 0.8 × 10−3 | [75] |
Pure PNP | 0.0 | 0.7 | 100 | 10 | ~10−5 | c.d. |
PNP+(C60+C70) | 1.0 | 0.7 | 100 | 10 | 3.8 × 10−3 | c.d. |
PNP+C60 | 1.0 | 0.7 | 100 | 10 | 4.0 × 10−3 | c.d. |
PNP+C70 | 1.0 | 0.7 | 100 | 10 | 4.3 × 10−3 | c.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N. Advances of the Holographic Technique to Test the Basic Properties of the Thin-Film Organics: Refractivity Change and Novel Mechanism of the Nonlinear Attenuation Prediction. Polymers 2024, 16, 2645. https://doi.org/10.3390/polym16182645
Kamanina N. Advances of the Holographic Technique to Test the Basic Properties of the Thin-Film Organics: Refractivity Change and Novel Mechanism of the Nonlinear Attenuation Prediction. Polymers. 2024; 16(18):2645. https://doi.org/10.3390/polym16182645
Chicago/Turabian StyleKamanina, Natalia. 2024. "Advances of the Holographic Technique to Test the Basic Properties of the Thin-Film Organics: Refractivity Change and Novel Mechanism of the Nonlinear Attenuation Prediction" Polymers 16, no. 18: 2645. https://doi.org/10.3390/polym16182645
APA StyleKamanina, N. (2024). Advances of the Holographic Technique to Test the Basic Properties of the Thin-Film Organics: Refractivity Change and Novel Mechanism of the Nonlinear Attenuation Prediction. Polymers, 16(18), 2645. https://doi.org/10.3390/polym16182645