Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = free fatty acid release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2139 KiB  
Article
Phospholipase PLA2G16 Accelerates the Host Interferon Signaling Pathway Response to FMDV
by Bingjie Sun, Xiaodong Qin, Taoqing Zhang, Sujie Dong, Yinbo Ye, Changying Wang, Yan Zhang, Rongzeng Hao, Yi Ru, Hong Tian and Haixue Zheng
Viruses 2025, 17(7), 883; https://doi.org/10.3390/v17070883 - 23 Jun 2025
Viewed by 604
Abstract
PLA2G16 is a member of the phospholipase A2 family that catalyzes the generation of lysophosphatidic acids (LPAs) and free fatty acids (FFAs) from phosphatidic acid. Previously, PLA2G16 was found to be a host factor for picornaviruses. Here, we discovered that the Foot-and-Mouth Disease [...] Read more.
PLA2G16 is a member of the phospholipase A2 family that catalyzes the generation of lysophosphatidic acids (LPAs) and free fatty acids (FFAs) from phosphatidic acid. Previously, PLA2G16 was found to be a host factor for picornaviruses. Here, we discovered that the Foot-and-Mouth Disease Virus (FMDV) infection led to an elevation in PLA2G16 transcription. We established PLA2G16 overexpression and knockdown cell lines in PK-15 cells to investigate the potential role of PLA2G16 in FMDV infection. Our findings revealed that during FMDV infection, PLA2G16-overexpressing cells had increased levels of phosphorylated STAT1 and the interferon-stimulating factors ISG15 and ISG56. In PLA2G16-overexpressing cells, p-STAT1 was observed at higher levels and earlier than in wild-type cells. Subsequent research demonstrated that PLA2G16 specifically promoted an antiviral innate immune response against FMDV. The host could detect the early release of FMDV viral nucleic acid in PLA2G16-overexpressing cells and trigger the interferon signaling pathway. Additionally, we discovered that the supernatants of PLA2G16-overexpressing cells stimulated the production of higher levels of ISG56 and phosphorylated STAT1. This suggests that PLA2G16-overexpressing cells can activate the innate immune pathway of uninfected cells after FMDV infection. Full article
Show Figures

Figure 1

14 pages, 1238 KiB  
Article
Optimization of Solid Lipid Microcapsule Matrix for Enhanced Release and Bioavailability of L-Lysine in Swine
by Costanza Bonnici, Maria Federica Marchesi, Martina Felici, Federico Ghiselli, Roberta Majer, Benedetta Tugnoli, Guglielmo Gallina, Andrea Piva and Ester Grilli
Animals 2025, 15(12), 1806; https://doi.org/10.3390/ani15121806 - 19 Jun 2025
Viewed by 359
Abstract
L-lysine (L-Lys) is the first-limiting amino acid in swine nutrition, but free-form supplements exhibit poor intestinal absorption, reducing their bioavailability. This study aimed to enhance the gastric retention, controlled intestinal release, and systemic availability of L-Lys by optimizing solid lipid microcapsules (SLMs). SLMs [...] Read more.
L-lysine (L-Lys) is the first-limiting amino acid in swine nutrition, but free-form supplements exhibit poor intestinal absorption, reducing their bioavailability. This study aimed to enhance the gastric retention, controlled intestinal release, and systemic availability of L-Lys by optimizing solid lipid microcapsules (SLMs). SLMs were formulated using hydrogenated triglycerides (C16:0 or C18:1), free fatty acids, and varying emulsifier concentrations. Gastric retention and intestinal release were evaluated in vitro under simulated gastrointestinal conditions (a pepsin buffer at pH 5.0 for 2 h, followed by a pancreatin buffer at pH 6.5 for up to 8 h at 39 °C). SLMs with hydrogenated triglycerides showed significantly higher gastric retention (94–95%) than those with free fatty acids (48%). Specifically, C16:0 triglyceride-based SLMs achieved 74% intestinal release, which was enhanced to 90% with 1% emulsifier. This refined formulation was subsequently evaluated in vivo using weaned pigs (three groups; n = 4) fed a basal cornmeal diet. The treatments included a single oral administration of saline solution (placebo), free L-Lys (0.17 g/kg BW), or L-Lys SLMs (0.38 g/kg BW, equally providing L-Lys at 0.17 g/kg BW). The SLMs delayed the L-Lys plasma peak (T. max. 3–4 h vs. 1 h) and significantly increased the total L-Lys amount in the plasma over 24 h, demonstrating the enhanced relative bioavailability of encapsulated L-Lys. Full article
Show Figures

Figure 1

23 pages, 7855 KiB  
Article
Novel Acylated Naringin Enhances Propionate Release and Stimulates the Growth of Flavanone-Metabolizing Bacteria in an In Vitro Batch Fermentation Model
by Blanca Elizabeth Ruiz-Álvarez, José Daniel Padilla-de la Rosa, Marisela González Avila, Georgina Sandoval and Yves Desjardins
Life 2025, 15(6), 967; https://doi.org/10.3390/life15060967 - 17 Jun 2025
Viewed by 797
Abstract
The increasing prevalence of non-communicable diseases (NCDs) is strongly associated with gut microbiota (GM) imbalances and reduced short-chain fatty acid (SCFA) production, primarily driven by poor diet and microbial dysbiosis. Since SCFAs are crucial for gut health, immune regulation, and inflammation control, restoring [...] Read more.
The increasing prevalence of non-communicable diseases (NCDs) is strongly associated with gut microbiota (GM) imbalances and reduced short-chain fatty acid (SCFA) production, primarily driven by poor diet and microbial dysbiosis. Since SCFAs are crucial for gut health, immune regulation, and inflammation control, restoring their levels is a key therapeutic target. SCFA-acylated naringin derivatives offer a novel approach by enhancing SCFA delivery and modulating GM composition. In this study, we investigated the effects of naringin acetate and naringin propionate on SCFA production using a 24 h short-term in vitro batch fecal fermentation model with microbiota from two donors. Naringin propionate and naringin plus free propionate significantly increased propionate levels by 0.74 mM and 0.75 mM, respectively (p < 0.0001), while naringin acetate induced a smaller increase of 0.26 mM. Donor-specific reflected differences in microbial communities, yet SCFA enhancement was observed across samples. Additionally, naringin treatments stimulated the growth of beneficial polyphenol-metabolizing bacteria, including Bacteroides, Streptococcus, and Eubacterium siraeum. The strong effect of naringin propionate suggests a sustained SCFA release mediated by microbial enzymes. These preliminary results highlight the potential of SCFA-acylated flavonoids as functional dietary components to increase SCFA bioavailability and support gut health, particularly from citrus-derived co-products. Full article
Show Figures

Figure 1

13 pages, 1932 KiB  
Article
Acetazolamide-Loaded Nanoparticle Based on Modified Hyaluronic Acid as Delivery System to Target Carbonic Anhydrases in Escherichia coli
by Valentina Verdoliva, Viviana De Luca, Claudiu T. Supuran, Stefania De Luca and Clemente Capasso
Int. J. Mol. Sci. 2025, 26(10), 4908; https://doi.org/10.3390/ijms26104908 - 20 May 2025
Viewed by 428
Abstract
Acetazolamide (AZA) is a validated carbonic anhydrase inhibitor (CAI) that has the potential for use in various therapeutic applications. Herein, we report a novel AZA-loaded biodegradable nanodelivery system that was proven to enhance the antibacterial efficacy of the drug against Gram-negative bacteria, such [...] Read more.
Acetazolamide (AZA) is a validated carbonic anhydrase inhibitor (CAI) that has the potential for use in various therapeutic applications. Herein, we report a novel AZA-loaded biodegradable nanodelivery system that was proven to enhance the antibacterial efficacy of the drug against Gram-negative bacteria, such as Escherichia coli. Carbonic anhydrases (CA, EC 4.2.1.1) in E. coli play a crucial role in bacterial metabolism and CO2/HCO3 balance; therefore, they represent a suitable target for antimicrobial strategies. The nanoparticles were obtained using a green synthetic protocol that allowed conjugation of a natural fatty acid to hyaluronic acid (HA) under solvent-free conditions. Full characterization of the micellar aggregates was performed (diameter of the micelles, zeta potential, and drug release study). In vitro studies demonstrated that AZA loaded in HA-based nanoparticles significantly inhibited E. coli growth at concentrations as low as 0.5 µg/mL, whereas higher concentrations of free AZA were required, as previously reported. Additionally, encapsulated AZA disrupted glucose consumption in E. coli, indicating its profound impact on bacterial metabolism. These findings suggest that the HA–palmitate nanoparticle not only enhances the delivery and efficacy of AZA but also offers a strategy to affect bacterial metabolism. Full article
Show Figures

Figure 1

16 pages, 268 KiB  
Article
Inversely Correlated Restoration of Body Condition Score and Systemic Metabolic Burden in Lactating Cows: Implications for Milk Fat Globule Size and Mitigation of Negative Energy Balance Effects on Milk Fat Composition
by Krzysztof Młynek, Kalina Wnorowska, Agata Danielewicz, Antonio Natalello and Kamila Puppel
Int. J. Mol. Sci. 2025, 26(9), 4296; https://doi.org/10.3390/ijms26094296 - 1 May 2025
Cited by 1 | Viewed by 364
Abstract
In lactating dairy cows, negative energy balance (NEB) induces metabolic shifts, including enhanced lipolysis, leading to elevated concentrations of free fatty acids (FFAs) in circulation. Metabolic changes affect milk fat synthesis and the characteristics of milk fat globules (MFGs), particularly their size and [...] Read more.
In lactating dairy cows, negative energy balance (NEB) induces metabolic shifts, including enhanced lipolysis, leading to elevated concentrations of free fatty acids (FFAs) in circulation. Metabolic changes affect milk fat synthesis and the characteristics of milk fat globules (MFGs), particularly their size and distribution. Systemic FFA release inversely correlates with the restoration of the body condition score (BCS), suggesting that recovering the BCS may mitigate the negative effects of NEB on milk fat composition. This study aimed to investigate the relationship between BCS restoration, metabolic burden, and their effects on MFG characteristics in lactating cows. The study was conducted on two dairy farms (F1 and F2) with 80 Holstein-Friesian cows. Cows were grouped according to farm and diet, with average lactation yields of 9653 ± 259 kg (F1) and 9548 ± 341 kg (F2). Milk composition was analyzed, and blood and milk samples were collected at four lactation stages. The results showed a significant correlation between elevated circulating FFA concentrations, resulting from adipose tissue lipolysis during NEB, and alterations in MFG size and distribution. The restoration of BCS was inversely correlated with FFA release, suggesting that improvements in the BCS may mitigate the adverse effects of NEB on milk fat synthesis by regulating lipolysis. Additionally, higher β-hydroxybutyrate (BHBA) levels were associated with a reduction in MFG diameter, indicating disruptions in lipogenesis during metabolic stress. These findings highlight the complex relationship between metabolic stress, BCS restoration, and MFG characteristics, with implications for milk fat synthesis in lactating cows. Full article
(This article belongs to the Special Issue Advances in Homeostasis and Metabolism in Health and Disease)
12 pages, 2784 KiB  
Article
Depletion of WWP1 Increases Adrb3 Expression and Lipolysis in White Adipose Tissue of Obese Mice
by Yuka Nozaki, Yuko Ose, Chinatsu Ohmori, Yuhei Mizunoe, Masaki Kobayashi, Akiyoshi Saitoh and Yoshikazu Higami
Int. J. Mol. Sci. 2025, 26(9), 4219; https://doi.org/10.3390/ijms26094219 - 29 Apr 2025
Viewed by 592
Abstract
Obesity is defined as abnormal or excessive accumulation of body fat and contributes to several metabolic disorders. White adipose tissue (WAT) releases energy as free fatty acids and glycerol from triglycerides through a process called lipolysis. People with obesity have impaired catecholamine-stimulated lipolysis, [...] Read more.
Obesity is defined as abnormal or excessive accumulation of body fat and contributes to several metabolic disorders. White adipose tissue (WAT) releases energy as free fatty acids and glycerol from triglycerides through a process called lipolysis. People with obesity have impaired catecholamine-stimulated lipolysis, but comprehensive understanding of this lipolysis is still unclear. We previously showed that expression of WW domain-containing E3 ubiquitin ligase 1 (WWP1), a member of the HECT-type E3 family of ubiquitin ligases, was increased in WAT of obese mice. In this study, we generated Wwp1 knockout (KO) mice to evaluate the effect of WWP1 in WAT of obese mice. The mRNA levels of beta-3 adrenergic receptor (Adrb3), which were decreased with a high-fat diet, were increased by Wwp1 KO in WAT. Moreover, Wwp1 KO mice showed increased phosphorylated hormone-sensitive lipase levels in WAT. In contrast, noradrenaline and its metabolism were not altered in WAT of obese Wwp1 KO mice. These findings indicate that WWP1, which is increased in adipocytes because of obesity, is a candidate for suppressing lipolysis independently of noradrenaline metabolism. We anticipate that inhibition of WWP1 is a promising approach for a new treatment of obesity and type-2 diabetes using Adrb3 agonists. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Graphical abstract

15 pages, 2182 KiB  
Article
A Lipidomic Approach to Studying the Downregulation of Free Fatty Acids by Cytosolic Phospholipase A2 Inhibitors
by Asimina Bourboula, Christiana Mantzourani, Ioanna Chalatsa, Christina Machalia, Evangelia Emmanouilidou, Maroula G. Kokotou and George Kokotos
Biomolecules 2025, 15(5), 626; https://doi.org/10.3390/biom15050626 - 27 Apr 2025
Viewed by 651
Abstract
Inhibitors of cytosolic phospholipase A2 (GIVA cPLA2) have received great attention, since this enzyme is involved in a number of inflammatory diseases, including cancer and auto-immune and neurodegenerative diseases. Traditionally, the effects of GIVA cPLA2 inhibitors in cells have [...] Read more.
Inhibitors of cytosolic phospholipase A2 (GIVA cPLA2) have received great attention, since this enzyme is involved in a number of inflammatory diseases, including cancer and auto-immune and neurodegenerative diseases. Traditionally, the effects of GIVA cPLA2 inhibitors in cells have been studied by determining the inhibition of arachidonic acid release. However, although to a lesser extent, GIVA cPLA2 may also hydrolyze glycerophospholipids, releasing other free fatty acids (FFAs), such as linoleic acid or oleic acid. In the present work, we applied a liquid chromatography–high-resolution mass spectrometry method to study the levels of intracellular FFAs, after treating cells with selected GIVA cPLA2 inhibitors. Six inhibitors belonging to different chemical classes were studied, using SH-SY5Y neuroblastoma cells as a model. This lipidomic approach revealed that treatment with each inhibitor created a distinct intracellular FFA profile, suggesting not only inhibitory potency against GIVA cPLA2, but also other parameters affecting the outcome. Potent inhibitors were found to reduce not only arachidonic acid, but also other long-chain FAs, such as adrenic or linoleic acid, even medium-chain FAs, such as caproic or caprylic acid, suggesting that GIVA cPLA2 inhibitors may affect FA metabolic pathways in general. The downregulation of intracellular FFAs may have implications in reprogramming FA metabolism in neurodegenerative diseases and cancer. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Members)
Show Figures

Graphical abstract

21 pages, 6272 KiB  
Article
The Influence of Droplet Size and Emulsifiers on the In Vitro Digestive Properties of Bimodal Oil-in-Water Emulsions
by Takumi Umeda, Hiroyuki Kozu and Isao Kobayashi
Foods 2025, 14(7), 1239; https://doi.org/10.3390/foods14071239 - 1 Apr 2025
Viewed by 718
Abstract
Lipids are often ingested via oil-in-water (O/W) emulsions, where interfacial properties and droplet size influence their digestibility. In this study, a bimodal O/W emulsion, termed Food Emulsion Blend (FEB), was prepared by mixing two monodisperse emulsions of different droplet sizes and compositions. The [...] Read more.
Lipids are often ingested via oil-in-water (O/W) emulsions, where interfacial properties and droplet size influence their digestibility. In this study, a bimodal O/W emulsion, termed Food Emulsion Blend (FEB), was prepared by mixing two monodisperse emulsions of different droplet sizes and compositions. The influence of droplet size and emulsifier type on in vitro digestion was evaluated. Soybean oil was used as the dispersed phase, and monodisperse emulsions were prepared via premix membrane emulsification using membranes with pore sizes of 1, 10, and 50 µm. Two selected emulsions were mixed in equal proportions to form FEB. The emulsifiers included 1.0% (w/w) Tween 20 (TW) or 0.5% (w/w) Tween 20 and 0.5% (w/w) citrus pectin (TWCP). The d4,3 values of the emulsions stabilized by TW and TWCP ranged from 1.05 to 51.99 µm and from 1.19 to 46.94 µm, respectively. In vitro digestion revealed that all FEB samples retained bimodal size distributions post-gastric digestion. Free fatty acid release correlated strongly with the initial total droplet surface area for the TW- and TWCP-stabilized FEBs (R2 > 0.8). These results suggest that FEB allows for the precise control of lipid release, offering potential applications in food formulation. Full article
Show Figures

Figure 1

21 pages, 4881 KiB  
Article
Design of Decanoic Acid/Polysorbate 80 Composite Vesicles as Cosmetics Carrier: Stability, Skin Permeability, Antioxidant and Antibacterial Activity
by Ying Yang, Bohang Zou, Xinyu Fan, Xinyue Ma, Siqi Li, Xiangyu Zhang, Jinlian Li and Dongmei Wu
Molecules 2025, 30(3), 624; https://doi.org/10.3390/molecules30030624 - 31 Jan 2025
Viewed by 889
Abstract
Fatty acid vesicles are natural biomaterials which possess unique bilayer structures and offer biomimetic advantages for drug and gene delivery. Nevertheless, the formation of fatty acid vesicles is limited to neutral alkaline circumstances and cannot adapt to the acidic environment of the living [...] Read more.
Fatty acid vesicles are natural biomaterials which possess unique bilayer structures and offer biomimetic advantages for drug and gene delivery. Nevertheless, the formation of fatty acid vesicles is limited to neutral alkaline circumstances and cannot adapt to the acidic environment of the living system. In this work, the non-ionic surfactant polysorbate 80 (TW80) was introduced, extending the pH window of vesicles formed by decanoic acid (DA) from 6.90–7.80 to 2.28–6.31. The DA/TW80 composite vesicles were used to encapsulate quercetin (QT), achieving an encapsulation efficiency of up to 75.6%. The formation of DA/TW80/QT composite vesicles was confirmed through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Moreover, free QT was released rapidly, while QT encapsulated in the DA/TW80 composite vesicles demonstrated a slower release profile. Skin permeability studies revealed that the cumulative drug penetration within 24 h using the DA/TW80/QT composite vesicles reached approximately 904.7 μg·cm−2, 1.81 times higher than that of a QT solution. Furthermore, the DA/TW80/QT composite vesicles demonstrated enhanced antioxidant activity and greater antibacterial efficacy compared to either the drug or the vesicles alone. The results provide a crucial foundation for the application of drug-loaded vesicles in cosmetics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 2703 KiB  
Article
Calcium Release-Activated Calcium Modulator ORAI1-Sensitive Serine Dehydratase Regulates Fatty Acid-Induced CD4+ Th17/Treg Imbalance in Dairy Cows
by Bingbing Zhang, Jingjing Wang, Ming Li, Jianan Wen, Juan J. Loor, Shuang Wang, Ziwei Ji, Xinquan Lv, Guihua Wang, Cheng Xia, Wei Yang and Chuang Xu
Animals 2025, 15(3), 388; https://doi.org/10.3390/ani15030388 - 30 Jan 2025
Viewed by 877
Abstract
High concentrations of free fatty acids (FFAs) caused by negative energy balance render the cow more prone to inflammatory diseases in part due to an imbalance in the types of immune cells and their specific functions. We previously demonstrated that ORAI calcium release-activated [...] Read more.
High concentrations of free fatty acids (FFAs) caused by negative energy balance render the cow more prone to inflammatory diseases in part due to an imbalance in the types of immune cells and their specific functions. We previously demonstrated that ORAI calcium release-activated calcium modulator 1 (ORAI1) was associated with increased CD4+ Th17 content, but the precise mechanisms remain unclear. The purpose of this study was to evaluate the efficacy of FFAs on CD4+ T cell inflammatory response. High FFAs in dairy cows caused the transcript level of the pro-inflammatory factor IL-17A, plasma concentration of IL-17A, and amount of intracellular IL-17A to increase while the transcript levels and intracellular amount of the anti-inflammatory factor FOXP3 were downregulated. These changes indicated Th17/Treg imbalance and inflammation in dairy cows with high FFA. Moreover, ORAI1 and SDS abundance was elevated in dairy cows with high FFAs by transcriptomics, QPCR, and Western blot. Knockdown of SDS (siSDS) did not alter ORAI1 expression in CD4+ T cells from high-FFA cows, while it decreased the expression of inflammatory factors. Transfection of CD4+ T cells using siRNA knockdown for ORAI1 (siORAI1) revealed that SDS and inflammatory factor abundance decreased. Serine can be catabolized to pyruvate by the action of serine dehydratase (SDS). Data from this study suggested that high FFAs caused by negative energy balance after calving regulates the Th17/Treg balance via SDS, but SDS does not regulate ORAI1 abundance. The above data suggested a pro-inflammatory mechanism in CD4+ T cells regulated by the ORAI1-sensitive SDS pathway in early postpartum cows experiencing high-FFA conditions. Thus, targeting this pathway may represent a new therapeutic and interventional approach for preventing immune-related disorders around parturition. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

21 pages, 5554 KiB  
Article
The PLA Gene Family in Tomato: Identification, Phylogeny, and Functional Characterization
by Zixing Li, Zhuping Yao, Meiying Ruan, Rongqing Wang, Qingjing Ye, Hongjian Wan, Guozhi Zhou, Yuan Cheng, Shangjing Guo, Chaochao Liu and Chenxu Liu
Genes 2025, 16(2), 130; https://doi.org/10.3390/genes16020130 - 23 Jan 2025
Cited by 1 | Viewed by 1322
Abstract
Background: Phospholipase A (PLA) enzymes catalyze the hydrolysis of glycerophospholipids, releasing free fatty acids and lysophospholipids that play vital roles in plant growth, development, and stress responses. Methods: This study identified and analyzed SlPLA genes through bioinformatics and further explored the function of [...] Read more.
Background: Phospholipase A (PLA) enzymes catalyze the hydrolysis of glycerophospholipids, releasing free fatty acids and lysophospholipids that play vital roles in plant growth, development, and stress responses. Methods: This study identified and analyzed SlPLA genes through bioinformatics and further explored the function of PLA genes under cold stress through virus-induced gene silencing (VIGS) experiments. Results: This study systematically characterized the SlPLA gene family in tomato, identifying 80 genes distributed across 12 chromosomes. Phylogenetic analysis categorized these genes into three groups: pPLA, PLA1, and PLA2. Conserved motifs and gene structure analysis revealed distinct patterns, with some genes lacking untranslated regions (UTRs), which suggests functional diversification. Promoter analysis indicated that SlPLA genes are regulated by light, hormones, and stress-related elements, particularly cold stress. RNA-seq data and qRT-PCR results indicated the differential expression of SlPLA genes across various tissues in tomato cultivars (Heinz and Micro-Tom). Under cold stress, certain SlPLA genes, especially SlPLA1-2, were up-regulated, suggesting their involvement in cold tolerance. Silencing SlPLA1-2 resulted in increased membrane damage, elevated malondialdehyde (MDA) levels, higher electrolyte leakage, and a lower expression of cold-responsive genes within the ICE1-CBF-COR pathway and jasmonic acid (JA) biosynthesis. Conclusions: This study discovered 80 SlPLA genes in tomato across 12 chromosomes, categorizing them into pPLA, PLA1, and PLA2 via phylogenetic analysis. The qRT-PCR analysis identified that SlPLA1-2 was strongly induced by cold stress, and further experiments regarding genetics and physiology revealed that SlPLA1-2 boosts the cold tolerance of tomato by affecting the CBF signaling pathway and JA biosynthesis, offering insights for future stress-resilience breeding. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

21 pages, 6818 KiB  
Article
Whey Protein Hydrogels and Emulsion Gels with Anthocyanins and/or Goji Oil: Formation, Characterization and In Vitro Digestion Behavior
by Abdullah S. Seddiek, Kaiwen Chen, Fanlin Zhou, Muhindo Mwizerwa Esther, Abdelaziz Elbarbary, Hazem Golshany, Angelo Uriho and Li Liang
Antioxidants 2025, 14(1), 60; https://doi.org/10.3390/antiox14010060 - 7 Jan 2025
Cited by 1 | Viewed by 1526
Abstract
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion [...] Read more.
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix. Heat-denatured WPI (hWPI) particles and emulsions were characterized in terms of size distribution, ζ-potential, interfacial protein, and anthocyanin partition. The inclusion of anthocyanins-rich blueberry extract led to the aggregation of hWPI particles, but it also increased the interfacial protein of 10% goji oil emulsions to 20% and decreased their size distribution to 120 and 325 nm. WPI hydrogels and emulsion gels were analyzed in terms of their water-holding capacity, which decreased from 98% to 82% with the addition of blueberry extract and goji oil. Syneresis, rheological, and morphological characteristics were also analyzed. The gelation time of hWPI particles and emulsions was shortened from 24 h to 12 h when incorporating blueberry extract to form a dense network. The network was the most homogeneous and densest in the presence of 3% blueberry extract and 5% goji oil. The co-inclusion of blueberry extract and goji oil increased the syneresis during the freeze–thaw cycles, with the values rising from 13% to 36% for 5% BE hydrogel and BE-containing emulsion gels after the first cycle. All WPI hydrogels and emulsion gels exhibit predominantly elastic behavior. Moreover, anthocyanin release, antioxidant activity, and the fatty acid composition profile were also analyzed during in vitro digestion. Soluble and free anthocyanins in the digested medium were reduced with the goji oil content but increased with the blueberry extract content. The stability of polyunsaturated fatty acids in the digested medium was improved by the addition of blueberry extract. The antioxidant activity of the digested medium increased with the content of blueberry extract but decreased with the content of goji oil. The ABTS∙+ scavenging capacities decreased from 63% to 49% by increasing the content of GO from 0% to 10% and they increased from 48% to 57% for 5% BE and 10% GO emulsion gels as the BE content increased from 0% to 5% after 6 h of digestion. The data gathered should provide valuable insights for future efforts to co-encapsulate hydrophilic and hydrophobic agents, thereby enhancing their stability, bioavailability, and functional properties for potential applications in food industries. Full article
Show Figures

Figure 1

16 pages, 5693 KiB  
Article
Soy Protein Isolate Improved the Properties of Fish Oil-Loaded Chitosan–Sodium Tripolyphosphate Capsules
by Yunning Wang, Mubeen Asad, Deqian Wang, Xiaofan Gao, Guoliang Zheng, Jian Zhong, Jing Xie and Zhengquan Wang
Foods 2025, 14(1), 86; https://doi.org/10.3390/foods14010086 - 1 Jan 2025
Cited by 1 | Viewed by 1892
Abstract
In this paper, the effect of soybean isolate protein (SPI) content on the physicochemical properties and oxidative stability of chitosan–sodium tripolyphosphate (CS-STPP)-loaded fish oil capsules was investigated. The SPI/CS-STTP capsules formed after the addition of different amounts of SPI were larger in size [...] Read more.
In this paper, the effect of soybean isolate protein (SPI) content on the physicochemical properties and oxidative stability of chitosan–sodium tripolyphosphate (CS-STPP)-loaded fish oil capsules was investigated. The SPI/CS-STTP capsules formed after the addition of different amounts of SPI were larger in size and more homogeneous in morphology than the CS-STPP capsules, and the SPI was encapsulated on the surface of the CS matrix, altering the surface properties and morphology of the particles. The study of different CS-to-SPI blend ratios (1:0, 3:1, 2:1, 1:1, 1:2) showed that the water content of the microcapsules increased from 49.79% to 53.27–64.99%, the fish oil loading increased from 17.06% to 18.31–24.89%, and the encapsulation rate increased from 89.42% to 93.90–96.14%. In addition, the addition of SPI reduced the maximum peroxide value from 445 to 264 meq/kg oil. In the simulated in vitro digestion experiments, the addition of various amounts of SPI resulted in a significantly lower percentage of final free fatty acid (FFA) release than observed for CS-STPP capsules alone. These changes observed in the properties may be due to structural differences between CS-STPP capsules and SPI/CS-STPP capsules. All the results confirm that the obtained capsules are promising for the development of functional foods and drugs. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

17 pages, 1221 KiB  
Article
Comparative Analysis of Fatty Acid Bioaccessibility in Commercial Marine Oil Supplements: An In Vitro Integrated Analytical Study
by Thomas Montebugnoli, Giorgia Antonelli, Elena Babini, Ester Maria Vasini, Francesca Danesi, Sigrún Huld Jónasdóttir, María Gudjónsdóttir, Francesco Capozzi and Alessandra Bordoni
Foods 2024, 13(24), 4177; https://doi.org/10.3390/foods13244177 - 23 Dec 2024
Viewed by 1699
Abstract
Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in [...] Read more.
Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e., the percentage of fatty acids that are released into the intestine in a form that can be absorbed by enterocytes. We evaluated fatty acid release after in vitro digestion in four commercial marine oil supplements containing fish, krill and Calanus finmarchicus oils using two different analytical approaches, TLC-FID and 1H-NMR spectroscopy. The results clearly indicated that the release of free fatty acids (FFAs) after simulated digestion mainly depends on the oil source and is mainly related to the partitioning of lipids into different classes. In fact, the lowest FFA release was detected in Calanus oils, which contain high amounts of wax esters. The different release of FFAs, which appeared secondarily related to encapsulation, can modulate the absorption and blood concentration of the administered n-3 LC-PUFAs and therefore their efficacy. This may partly explain the inconsistencies in intervention studies using marine oil supplements. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Figure 1

17 pages, 4671 KiB  
Article
Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model
by Jiayue Zhao, Xinmeng Zhang, Yanan Huang, Yan Tan, Shuang Ren and Fang Yuan
Foods 2024, 13(23), 3782; https://doi.org/10.3390/foods13233782 - 25 Nov 2024
Viewed by 977
Abstract
The oral bioavailability of curcumin is inherently low, which significantly limits its application in food systems. The objective of this study was to evaluate the impact of high-pressure processing on the stability and bioaccessibility of curcumin within an emulsion gel during simulated gastrointestinal [...] Read more.
The oral bioavailability of curcumin is inherently low, which significantly limits its application in food systems. The objective of this study was to evaluate the impact of high-pressure processing on the stability and bioaccessibility of curcumin within an emulsion gel during simulated gastrointestinal transit and to assess its cellular uptake. Our findings suggest that increasing pressure levels and high κ-carrageenan concentrations can enhance the stability of the curcumin delivery system. Elevated κ-CG concentrations were found to retard the action of proteases on dissociating protein molecules from the gel network. The emulsion gel effectively slowed the release of free fatty acids and reduced the curcumin release rate during the gastric phase. Scanning electron microscopy images revealed that higher pressures induced the formation of a more uniform and dense network structure in the gel. While the gel network structures were well-preserved after gastric digestion, they were disrupted into smaller particles following intestinal digestion, with particle size increasing with higher applied pressures. Cytotoxicity assays indicated that the digesta from the intestinal phase was highly toxic to Caco-2 cells. Among the tested samples, the emulsion gel prepared with 1.0% κ-CG at 600 MPa demonstrated the highest curcumin bioavailability, reaching 63.82 ± 7.10%. These findings underscore the potential of HPP-induced emulsion gels as a viable delivery system for enhancing curcumin bioaccessibility and cellular uptake. Full article
Show Figures

Figure 1

Back to TopTop