Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parametric Stent Model
2.1.1. X-pattern
Pitch Angle
Wire Thickness t
Number of Peaks (or Cell Units) p
2.1.2. W-pattern
Wire Thickness t
Number of Peaks (or Cell Units) p
Number of Rings r
2.2. Numerical Models and Boundary Conditions
2.3. Material Modeling and 3D Printing
2.4. Meshing
3. Results
3.1. X-pattern
3.1.1. Pitch Angle
3.1.2. Wire Thickness
3.1.3. Number of Peaks
3.1.4. Comparison between Parameters for X-pattern
3.2. W-pattern
3.2.1. Wire Thickness
3.2.2. Number of Peaks
3.2.3. Number of Rings
3.2.4. Comparison between Parameters for W-pattern
3.2.5. Comparison between X- and W-pattern
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafanan, A.L.; Mehta, A.C. Stenting of the tracheobronchial tree. Radiol. Clin. N. Am. 2000, 38, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Thornton, R.H.; Gordon, R.L.; Kerlan, R.K.; LaBerge, J.M.; Wilson, M.W.; Wolanske, K.A. Outcomes of tracheobronchial stent placement for benign disease. Radiology 2006, 240, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Delgado, I.; Gonzalez, J.P.; Machuca, M.; Pineda, M. Clinic, diagnosis and treatment of tracheal stenosis. An. PediatrÍa 2009, 70, 443–448. [Google Scholar]
- Fruchter, O.; Raviv, Y.; Fox, B.D.; Kramer, M.R. Removal of metallic tracheobronchial stents in lung transplantation with flexible bronchoscopy. J. Cardiothorac. Surg. 2010, 5, 72. [Google Scholar] [CrossRef] [PubMed]
- Minnich, D.J.; Mathisen, D.J. Anatomy of the trachea, carina, and bronchi. Thorac. Surg. Clin. 2007, 17, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Soon, J.L.; Agasthian, T. Total tracheal resection for long-segment benign tracheal stenosis. Ann. Thorac. Surg. 2008, 85, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Marques, P.; Leal, L.; Spratley, J.; Cardoso, E.; Santos, M. Tracheal resection with primary anastomosis: 10 years experience. Am. J. Otolaryngol. 2009, 30, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Uson, J.; Ezquerra, J.; Crisostomo, V.; Luis, L.; Maynar, M. Endotracheal stenting therapy in dogs with tracheal collapse. Vet. J. 2008, 175, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Dumon, F. A Dedicated tracheobronchial stent. Chest 1990, 97, 328–332. [Google Scholar] [CrossRef]
- Hautmann, H.; Bauer, M.; Pfeifer, K.J.; Huber, R.M. Flexible bronchoscopy: A safe method for metal stent implantation in bronchial disease. Ann. Thorac. Surg. 2000, 69, 398–401. [Google Scholar] [CrossRef]
- Mroz, R.M.; Kordecki, K.; Kozlowski, M.D.; Baniukiewicz, M.D.; Lewszuk, A.; Bondyra, Z. Severe respiratory distress caused by central airway obstruction treated with self-expandable metallic stents. J. Physiol. Pharmacol. 2008, 59 (Suppl. S6), 491–497. [Google Scholar]
- Saad, C.P.; Murthy, S.; Krizmanich, G.; Mehta, A.C. Self-expandable metallic airway stents and flexible bronchoscopy: Long-term outcomes analysis. Chest 2003, 124, 1993–1999. [Google Scholar] [CrossRef]
- Husain, S.A.; Finch, D.; Ahmed, M.; Morgan, A.; Hetzel, M.R. Long-term follow-up of ultraflex metallic stents in benign and malignant central airway obstruction. Ann. Thorac. Surg. 2007, 83, 1251–1256. [Google Scholar] [CrossRef]
- Chung, F.T.; Chen, H.C.; Chou, C.L.; Yu, C.T.; Kuo, C.H.; Kuo, H.P. An outcome analysis of self-expandable metallic stents in central airway obstruction: A cohort study. J. Cardiothorac. Surg. 2011, 8, 46. [Google Scholar] [CrossRef]
- Seijo, L.M.; Ancochea, J. In search of the ideal tracheobronchial stent: Metal or silicone? Arch. Bronconeumol. 2004, 40, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Imamura, H. Airway stenting. Surg. Today 2005, 35, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Dutau, H. Airway stenting for benign tracheal stenosis: What is really behind the choice of the stent? Eur. J. Cardiothorac. Surg. 2011, 40, 924–925. [Google Scholar]
- Elizondo, A. Intervencionismo pulmonar: Broncoscopia rígida, cirugía endobronquial láser y prótesis traqueobronquiales. Neumol. Cirugía Tórax 2006, 65, S26–S36. [Google Scholar]
- Gildea, T.R.; Young, B.P.; Machuzak, M.S. Application of 3D printing for patient-specific silicone stents: 1-year follow-up on 2 patients. Respiration 2018, 96, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Freitag, L.; Gordes, M.; Zarogoulidis, P.; Darwiche, K.; Franzen, D.; Funke, F.; Hohenforst-Schmidt, W.; Dutau, H. Towards individualized tracheobronchial stents: Technical, practical and legal considerations. Respiration 2017, 94, 442–456. [Google Scholar] [CrossRef]
- Ghosh, S.; Akulian, A.C.B.J.A. Customizable airway stents- personalized medicine reaches the airways. J. Thorac. Dis. 2019, 11, S1129–S1131. [Google Scholar] [CrossRef] [PubMed]
- Guibert, N.; Saca, H.; Dutau, H. Airway stenting: Technological advancements and its role in interventional pulmonology. Respirology 2020, 25, 953–962. [Google Scholar] [CrossRef] [PubMed]
- FDA. Food and Drug Administration. 3D Printing of Medical Devices. 2018. Available online: https://www.fda.gov/medical-devices/products-and-medical-procedures/3d-printing-medical-devices (accessed on 20 February 2024).
- Joseph, T.M.; Kallingal, A.; Suresh, A.M.; Mahapatra, D.K.; Hasanin, M.S.; Haponiuk, J.; Thomas, S. 3D printing of polylactic acid: Recent advances and opportunities. Int. J. Adv. Manuf. Technol. 2023, 125, 1015–1035. [Google Scholar] [CrossRef] [PubMed]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Malikmammadov, E.; Tanir, T.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. 2017, 29, 863–893. [Google Scholar] [CrossRef] [PubMed]
- Wojtowicz, A. Biodegradability and Compostability of Biopolymers. In Thermoplastic Starch—A Green Material for Various Industries; Wiley VCH: Hoboken, NJ, USA, 2009; Chapter 3; pp. 55–74. [Google Scholar]
- Jiang, B.; Jiao, H.; Guo, X.; Chen, G.; Guo, J.; Wu, W.; Jin, Y.; Cao, G.; Liang, Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. Adv. Sci. 2023, 10, 2206055. [Google Scholar] [CrossRef] [PubMed]
- Jaipan, P.; Nguyen, A.; Narayan, R.J. Gelatin-based hydrogels for biomedical applications. Mrs Commun. 2017, 7, 416–426. [Google Scholar] [CrossRef]
- Grira, S.; Khalifeh, H.A.; Alkhedher, M.; Ramadan, M. 3D printing algae-based materials: Pathway towards 4D bioprinting. Bioprinting 2023, 33, e00291. [Google Scholar] [CrossRef]
- Morrison, R.J.; Hollister, S.J.; Niedner, M.F.; Ghadimi Mahani, M.; Park, A.H.; Mehta, D.K.; Ohye, R.G.; Green, G.E. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 2015, 7, 285ra64. [Google Scholar] [CrossRef] [PubMed]
- Debiane, L.; Reitzel, R.; Rosenblatt, J.; Gagea, M.; Chavez, M.A.; Adachi, R.; Grosu, H.B.; Sheshadri, A.; Hill, L.R.; Raad, I.; et al. Design-Based Stereologic Method to Quantify the Tissue Changes Associated with a Novel Drug- Eluting Tracheobronchial Stent. Respiration 2019, 98, 60–69. [Google Scholar] [CrossRef]
- Melgoza, E.L.; Serenó, L.; Rosell, A.; Ciurana, J. An integrated parameterized tool for designing a customized tracheal stent. Comput.-Aided Des. 2012, 44, 1173–1181. [Google Scholar] [CrossRef]
- Melgoza, E.L.; Vallicrosa, G.; Serenó, L.; Rosell, A.; Rodríguez, C.; Elias, A.; Ciurana, J. Rapid Tooling Using 3D Printing System For Manufacturing Of Customized Tracheal Stent. J. Rapid Prototyp. 2014, 20, 2–12. [Google Scholar] [CrossRef]
- Xavier Gastal, R.; Stefani Sanches, P.R.; Viera de Macedo Neto, A.; Kuhl, G.; Bianchi Vearick, S.; Dall’Orden Michelon, M. Development of a modified Dumon stent for tracheal applications: An experimental study in dogs. Braz. J. Pulmonol. 2008, 34, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Schopf, L.F.; Fraga, J.C.; Porto, R.; Douglas, L.A.S.; Marques, R.; Sanchez, P.R.; Meyer, F.S.; Ulbrich, J.M. Experimental use of new absorbable tracheal stent. J. Pediatr. Surg. 2018, 53, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Zurita-Gabasa, J.; Sánchez-Matás, C.; Díaz-Jiménez, C.; López-Villalobos, J.L.; Malvè, M. A Parametric Tool for Studying a New Tracheobronchial Silicone Stent Prototype: Toward a Customized 3D Printable Prosthesis. Mathematics 2021, 9, 2118. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Liu, J. A domain-decomposition generalized finite difference method for stress analysis in three-dimensional composite materials. Appl. Math. Lett. 2020, 104, 106226. [Google Scholar] [CrossRef]
- Kabir, H.; Aghdam, M.M. A generalized 2D Bézier-based solution for stress analysis of notched epoxy resin plates reinforced with graphene nanoplatelets. Thin-Walled Struct. 2021, 169, 108484. [Google Scholar] [CrossRef]
- Bert, C.W.; Malik, M. Differential quadrature: A powerful new technique for analysis of composite structures. Compos. Struct. 1997, 39, 179–189. [Google Scholar] [CrossRef]
- Pant, S.; Bressloff, N.W.; Limbert, G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 2012, 11, 61–82. [Google Scholar] [CrossRef]
- Ratnovsky, A.; Regev, N.; Wald, S.; Kramer, M.; Naftali, S. Mechanical properties of different airway stents. Med. Eng. Phys. 2015, 37, 408–415. [Google Scholar] [CrossRef]
- Bressloff, N.W.; Ragkousis, G.; Curzen, N. Design Optimisation of Coronary Artery Stent Systems. Ann. Biomed. Eng. 2016, 44, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.M.; Chiu, Y.H.; Lee, K.H.; Lin, C.H. Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior. Comput.-Aided Des. 2012, 44, 757–765. [Google Scholar] [CrossRef]
- Bekal, C.; Shetty, R.; Shenoy, S. Numerical investigation of influence of number of stent cells and type of link on expansion and haemodynamic behaviour of balloon- expandable coronary stent. Sadhana 2018, 43, 1–12. [Google Scholar] [CrossRef]
- Britto, J.J.J.; Venkatesh, R.; Prabhakaran, R.; Amudhan, K. Design optimization of biomedical stent under the influence of the radial pressure using FEM. Mater. Today Proc. 2021, 39, 1332–1336. [Google Scholar] [CrossRef]
- Wu, W.; Petrini, L.; Gastaldi, D.; Villa, T.; Vedani, M.; Lesma, E.; Previtali, B. Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents. Ann. Biomed. Eng. 2010, 38, 2829–2840. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, D.; Lucchetti, A.; Audenino, A.L.; Gries, T.; Vaughan, T.J.; Chiastra, C. Multi-objective design optimization of bioresorbable braided stents. Comput. Methods Programs Biomed. 2023, 242, 107781. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, D.; Mezzadri, F.; Ferro, N.; De Nisco, G.; Audenino, A.L.; Chiastra, D.G.C.; Morbiducci, U.; Perotto, S. Design of innovative self-expandable femoral stents using inverse homogenization topology optimization. Comput. Methods Programs Biomed. 2023, 416, 116288. [Google Scholar] [CrossRef]
- Alaimo, G.; Auricchio, F.; Conti, M.; Zingales, M. Multi-objective optimization of nitinol stent design. Med. Eng. Physics 2017, 47, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Mehdi Torki, M.; Hassana, S.; Mehrzad Jalisi, M. Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Math. Comput. Simul. 2020, 169, 103–116. [Google Scholar] [CrossRef]
- Gharleghi, R.; Wright, H.; Luvio, V.; Jepson, N.; Luo, Z.; Senthurnathan, A.; Babaei, B.; Prusty, B.G.; Ray, T.; Beier, S. A multi-objective optimization of stent geometries. J. Biomech. 2021, 125, 110575. [Google Scholar] [CrossRef]
- Rebelo, R.; Vila, N.; Fangueiro, R.; Carvalho, S.; Rana, S. Influence of design parameters on the mechanical behavior and porosity of braided fibrous stents. Mater. Des. 2015, 86, 237–247. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.A.; Narayan, Y.S. Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 9; pp. 79–95. [Google Scholar] [CrossRef]
- Noppen, M. Airway injury and sequelae: Conservative view. Eur. Respir. Mon. 2004, 29, 234–245. [Google Scholar]
- Park, H.Y.; Kim, H.; Koh, W.J.; SUH, G.Y.; Chung, M.P.; Kwon, O.J. Natural stent in the management of post-intubation tracheal stenosis. Respirology 2009, 14, 583–588. [Google Scholar] [CrossRef]
- Malvè, M.; Barreras, I.; López-Villalobos, J.L.; Ginel, A.; Doblaré, M. Computational fluid-dynamics optimization of a human tracheal endoprosthesis. Int. Commun. Heat Mass Transf. 2012, 39, 575–581. [Google Scholar] [CrossRef]
- Lischke, R.; Pozniak, J.; Vondrys, D.; Elliott, M.J. Novel biodegradablestents in the treatment of bronchial stenosis after lung transplantation. Eur. J. Cardiothorac. Surg. 2011, 40, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Krysta, M.; Kiszka, A.; Górecki, W. Biodegradable airway stents: Novel treatment of airway obstruction in children. Adv. Clin. Exp. Med. 2019, 28, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Dutau, H.; Reynaud-Gaubert, M.; Thomas, P.A. Endoscopic management of post-lung transplantation anastomotic stenosis: Metallic, silicone or biodegradable stents. Eur. J. Cardiothorac. Surg. 2011, 41, 1216–1217. [Google Scholar] [CrossRef] [PubMed]
- Novotny, L.; Crha, M.; Rauser, P.; Hep, A.; Misik, J.; Necas, A.; Vondrys, D. Novel biodegradable polydioxanone stents in a rabbit airway model. J. Thorac. Cardiovasc. Surg. 2012, 143, 437–444. [Google Scholar] [CrossRef]
- Rodriguez-Zapater, S.; Serrano-Casorran, C.; Guirola, J.A.; Lopez-Minguez, S.; Bonastre, C.; De Gregorio, M.A. Stent traqueal biodegradable de polidioxanona. Estudio de la reactividad en conejo. Arch. Bronconeumol. 2020, 56, 643–650. [Google Scholar] [CrossRef]
- Pauck, R.G.; Reddy, B.D. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med. Eng. Phys. 2015, 37, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Malvè, M.; López-Villalobos, J.L.; Ginel, A.; Doblaré, M. Modelling the air mass transfer in a healthy and a stented rabbit trachea: CT-images, computer simulations and experimental study. Int. Commun. Heat Mass Trasfer 2014, 53, 1–8. [Google Scholar] [CrossRef]
- Chaure, J.; Serrano, C.; Fernández-Parra, R.; Peña, E.; Lostalé, F.; De Gregorio, M.A.; Martínez, M.; Malvè, M. On Studying the Interaction Between Different Stent Models and Rabbit Tracheal Tissue: Numerical, Endoscopic and Histological Comparison. Ann. Biomed. Eng. 2016, 44, 368–381. [Google Scholar] [CrossRef]
- De Beule, M.; Van Cauter, S.; Mortier, P.; Van Loob, D.; Van Impe, R.; Verdonck, P.; Verhegghe, B. Virtual optimization of self-expandable braided wire stents. Med. Eng. Phys. 2009, 31, 448–453. [Google Scholar] [CrossRef] [PubMed]
Parameters | Model | Model | Model | Model | Model | Model | Model |
---|---|---|---|---|---|---|---|
Thickness t (mm) | |||||||
Number of peaks p | 11 | 11 | 11 | 11 | 11 | 12 | 13 |
Pitch angle (°) | 60 | 60 | 60 | 45 | 30 | 60 | 60 |
Volume (mm3) |
Parameters | Model | Model | Model | Model | Model | Model | Model |
---|---|---|---|---|---|---|---|
Thickness t (mm) | |||||||
Number of peaks p | 4 | 4 | 4 | 4 | 4 | 3 | 5 |
Number of rings r | 3 | 3 | 3 | 4 | 5 | 3 | 3 |
Volume (mm3) | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayechu-Abendaño, A.; Pérez-Jiménez, A.; Sánchez-Matás, C.; López-Villalobos, J.L.; Díaz-Jiménez, C.; Fernández-Parra, R.; Malvè, M. Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs. Polymers 2024, 16, 1691. https://doi.org/10.3390/polym16121691
Ayechu-Abendaño A, Pérez-Jiménez A, Sánchez-Matás C, López-Villalobos JL, Díaz-Jiménez C, Fernández-Parra R, Malvè M. Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs. Polymers. 2024; 16(12):1691. https://doi.org/10.3390/polym16121691
Chicago/Turabian StyleAyechu-Abendaño, Ada, Aurora Pérez-Jiménez, Carmen Sánchez-Matás, José Luis López-Villalobos, Cristina Díaz-Jiménez, Rocío Fernández-Parra, and Mauro Malvè. 2024. "Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs" Polymers 16, no. 12: 1691. https://doi.org/10.3390/polym16121691
APA StyleAyechu-Abendaño, A., Pérez-Jiménez, A., Sánchez-Matás, C., López-Villalobos, J. L., Díaz-Jiménez, C., Fernández-Parra, R., & Malvè, M. (2024). Computational Analysis of Polymeric Biodegradable and Customizable Airway Stent Designs. Polymers, 16(12), 1691. https://doi.org/10.3390/polym16121691