Preparation and Characterization of Bio-oil Phenolic Foam Reinforced with Montmorillonite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of MBPRs
2.3. Preparation of MBPFs
2.4. Characterization
3. Results and Discussion
3.1. FT-IR Analysis
3.2. Foam Morphology of MBPFs
3.3. Apparent Density, Pulverization Rate, and Compressive Strength
3.4. Limited Oxygen Index Analysis
3.5. Thermal Stability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andersons, J.; Cābulis, U.; Stiebra, L.; Kirpļuks, M.; Spārniņš, E. Modeling the mode I fracture toughness of anisotropic low-density rigid PUR and PIR foams. Int. J. Fract. 2017, 205, 111–118. [Google Scholar] [CrossRef]
- Antunes, M.; Cano, Á.; Haurie, L.; Velasco, J.I. Esparto wool as reinforcement in hybrid polyurethane composite foams. Ind. Crop. Prod. 2011, 34, 1641–1648. [Google Scholar] [CrossRef]
- Linul, E.; Vălean, C.; Linul, P.-A. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams. Polymers 2018, 10, 1298. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, Z.; Li, X.; Zhou, J. A Nano Graphene Oxide/α-Zirconium Phosphate Hybrid for Rigid Polyvinyl Chloride Foams with Simultaneously Improved Mechanical Strengths, Smoke Suppression, Flame Retardancy and Thermal Stability. Compos. Part. A Appl. S. 2019, 121, 180–188. [Google Scholar] [CrossRef]
- Ma, Y.; Gong, X.; Liao, C.; Geng, X.; Wang, C.; Chu, F. Preparation and characterization of DOPO-ITA modified ethyl cellulose and its application in phenolic foams. Polymers 2018, 10, 1049. [Google Scholar] [CrossRef]
- Martín-Gallego, M.; López-Hernández, E.; Pinto, J.; Rodríguez-Pérez, M.A.; López-Manchado, M.A.; Verdejo, R. Transport properties of one-step compression molded epoxy nanocomposite foams. Polymers 2019, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Londoño Zuluaga, C.; Du, J.; Chang, H.-M.; Jameel, H.; Gonzalez, R.W. Lignin Modifications and Perspectives towards Applications of Phenolic Foams: A Review. BioResources 2018, 13, 9158–9179. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Zhou, C. Mechanical and thermal properties of modified red mud-reinforced phenolic foams. Polym. Int. 2018, 67, 528–534. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, L.; Jia, P.; Zhang, B.; Zhou, Y. Enhancement of thermal stability and chemical reactivity of phenolic resin ameliorated by nanoSiO2. Korean J. Chem. Eng. 2017, 35, 298–302. [Google Scholar] [CrossRef]
- Xiao, W.; Huang, Z.; Ding, J. The mechanical and thermal characteristics of phenolic foam reinforced with kaolin powder and glass fiber fabric. Mater. Sci. Eng. 2017, 274, 012013. [Google Scholar] [CrossRef]
- Gao, M.; Wu, W.; Wang, Y.; Wang, Y.; Wang, H. Phenolic foam modified with dicyandiamide as toughening agent. J. Therm. Anal. Calorim. 2015, 124, 189–195. [Google Scholar] [CrossRef]
- Del Saz-Orozco, B.; Alonso, M.V.; Oliet, M.; Domínguez, J.C.; Rodriguez, F. Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Compos. Part. B Eng. 2015, 75, 367–372. [Google Scholar] [CrossRef]
- Fu, J.; Detsi, E.; De Hosson, J.T.M. Recent advances in nanoporous materials for renewable energy resources conversion into fuels. Surf. Coat. Tech. 2018, 347, 320–336. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Preparation of bio-based phenol formaldehyde foams using depolymerized hydrolysis lignin. Ind. Crop. Prod. 2017, 97, 409–416. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, Y.; Zhang, M.; Liu, R. Characterization and properties of a lignosulfonate-based phenolic foam. Bioresources 2011, 7, 554–564. [Google Scholar]
- Zhuang, X.; Li, S.; Ma, Y.; Zhang, W.; Xu, Y.; Wang, C.; Chu, F. Preparation and Characterization of Lignin-Phenolic Foam. Adv. Mater. Res. 2011, 236, 1014–1018. [Google Scholar] [CrossRef]
- Delgado-Sánchez, C.; Sarazin, J.; Santiago-Medina, F.J.; Fierro, V.; Pizzi, A.; Bourbigot, S.; Celzard, A. Impact of the formulation of biosourced phenolic foams on their fire properties. Polym. Degrad. Stabil. 2018, 153, 1–14. [Google Scholar] [CrossRef]
- Lagel, M.C.; Pizzi, A.; Giovando, S.; Celzard, A. Development and Characterisation of Phenolic Foams with Phenol-Formaldehyde-Chestnut Tannins Resin. J. Renew. Mater. 2014, 2, 220–229. [Google Scholar] [CrossRef]
- Liang, B.; Li, X.; Hu, L.; Bo, C.; Zhou, J.; Zhou, Y. Foaming resol resin modified with polyhydroxylated cardanol and its application to phenolic foams. Ind. Crop. Prod. 2016, 80, 194–196. [Google Scholar] [CrossRef]
- Jing, S.; Li, T.; Li, X.; Xu, Q.; Hu, J.; Li, R. Phenolic foams modified by cardanol through bisphenol modification. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Xu, P.; Chang, J. Preparation and Characterization of Phenolic Foam Modified with Bio-Oil. Materials 2018, 11, 2228. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S. Production, separation and applications of phenolic-rich bio-oil—A review. Bioresour. Technol. 2015, 178, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Ayrilmis, N.; Özbay, G. Technological Properties of Plywood Bonded with Phenol-Formaldehyde Resol Resin Synthesized with Bio-Oil. Cerne 2017, 23, 493–500. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, P.; Chang, M.; Chang, J. Aging Properties of Phenol-Formaldehyde Resin Modified by Bio-Oil Using UV Weathering. Polymers 2018, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hou, X.; Wang, W.; Chang, J. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials. Materials 2017, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Uddin, F. Montmorillonite: An Introduction to Properties and Utilization. Curr. Top. Util. Clay. Ind. Med. Appl. 2018, 1. [Google Scholar] [CrossRef]
- Fan, Q.; Han, G.; Cheng, W.; Tian, H.; Wang, D.; Xuan, L. Effect of Intercalation Structure of Organo-Modified Montmorillonite/Polylactic Acid on Wheat Straw Fiber/Polylactic Acid Composites. Polymers 2018, 10, 896. [Google Scholar] [CrossRef]
- Mirabedini, S.M.; Behzadnasab, M.; Kabiri, K. Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2095–2106. [Google Scholar] [CrossRef]
- Huskić, M.; Anžlovar, A.; Žigon, M. Montmorillonite–phenolic resin nanocomposites prepared by one-step in-situ intercalative polymerisation. Appl. Clay Sci. 2014, 101, 484–489. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, S.-H.; Chen, Y. Nanocomposites from phenolic resin and various organo-modified montmorillonites: Preparation and thermal stability. J. Appl. Polym. Sci. 2006, 102, 5336–5343. [Google Scholar] [CrossRef]
- Kausar, A. Thermal, mechanical and flame retardant behavior of poly(urethane-ester) nanocomposite foams reinforced with hydroxyl modified montmorillonite. Int. J. Plast. Technol. 2015, 19, 275–287. [Google Scholar] [CrossRef]
- Nik Pauzi, N.N.P.; Majid, A.R.; Dzulkifli, M.H.; Yahya, M.Y. Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos. Part B Eng. 2014, 67, 521–526. [Google Scholar] [CrossRef]
- China National Standards. GB/T 14074-2017: Testing Methods for Wood Adhesives and Their Resins; China National Standards: Shenzhen, China, 2017. [Google Scholar]
- China National Standards. GB/T 6343-2009: Cellular Plastics and Rubbers―Determination of Apparent Density; China National Standards: Shenzhen, China, 2009. [Google Scholar]
- China National Standards. GB/T 12812-2006: Rigid Cellular Plastics―Determination of Friability; China National Standards: Shenzhen, China, 2006. [Google Scholar]
- Zhu, Y.; Wang, Z. Phenolic foams, modified by nano-metallic oxides, improved in mechanical strengths and friability. Iran. Polym. J. 2016, 25, 579–587. [Google Scholar] [CrossRef]
- China National Standards. GB/T 8813-2008: Rigid Cellular Plastics―Determination of Compression Properties; China National Standards: Shenzhen, China, 2008. [Google Scholar]
- China National Standards. GB/T 2406.2-2009: Plastics—Determination of Burning Behaviour by Oxygen Index—Part 2: Ambient-Temperature Test; China National Standards: Shenzhen, China, 2009. [Google Scholar]
- Semenzato, S.; Lorenzetti, A.; Modesti, M.; Ugel, E.; Hrelja, D.; Besco, S.; Bertani, R. A novel phosphorus polyurethane FOAM/montmorillonite nanocomposite: Preparation, characterization and thermal behaviour. Appl. Clay. Sci. 2009, 44, 35–42. [Google Scholar] [CrossRef]
- Ľalíková, S.; Pajtášová, M.; Chromčíková, M.; Liška, M.; Šutinská, V.; Olšovský, M.; Mojumdar, S.C. Investigation of natural rubber composites with addition of montmorillonite fillers using thermal analysis. J. Therm. Anal. Calorim. 2011, 10, 969–973. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Tang, N.; Dang, Z.; Shi, Y.; Zhaohe, M. Microwave-assisted Catalytic Pyrolysis of Cellulose for Phenol-rich Bio-oil Production. J. Energy Inst. 2018. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Desobry, S.; Keramat, J.; Nasirpour, A. Crystalline structure and morphological properties of porous cellulose/clay composites: The effect of water and ethanol as coagulants. Carbohyd. Polym. 2016, 141, 211–219. [Google Scholar] [CrossRef]
- Nur Humairah, A.R.; Zuraida, A. Properties of Sago Starch-Nanoclay Biocomposites Film. Adv. Mater. Res. 2012, 576, 480–483. [Google Scholar] [CrossRef]
- Ha Thuc, C.N.; Cao, H.T.; Nguyen, D.M.; Tran, M.A.; Duclaux, L.; Grillet, A.-C.; Ha Thuc, H. Preparation and Characterization of Polyurethane Nanocomposites Using Vietnamese Montmorillonite Modified by Polyol Surfactants. J. Nanomater. 2014, 2014, 302735. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Wang, J.; Wang, B.; Kong, L.; Jia, Q. Influence of MMT content on the microstructure and miscibility for PU/EP IPN nanocomposites by positron. Phys. Status Solidi 2007, 4, 3780–3784. [Google Scholar] [CrossRef]
- Vadas, D.; Igricz, T.; Sarazin, J.; Bourbigot, S.; Marosi, G.; Bocz, K. Flame retardancy of microcellular poly (lactic acid) foams prepared by supercritical CO2 - assisted extrusion. Polym. Degrad. Stabil. 2018, 153, 100–108. [Google Scholar] [CrossRef]
- Madaleno, L.; Pyrz, R.; Crosky, A.; Jensen, L.R.; Rauhe, J.C.M.; Dolomanova, V.; Norman, J. Processing and characterization of polyurethane nanocomposite foam reinforced with montmorillonite–carbon nanotube hybrids. Compos. Part A Appl. Sci. Manuf. 2013, 44, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Lin, Q.; Dong, S.; Xiong, L. Preparation and properties of montmorillonite/carbon foam nanocomposites. Appl. Clay Sci. 2017, 140, 31–37. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, R.; Hou, J.; Li, A.; Hou, X.; Gu, X. Effect of surface-modified clay on the thermal stability and insulation of polyorganosiloxane foam. Chem. Res. Chin. Univ. 2016, 32, 867–871. [Google Scholar] [CrossRef]
- Deng, F.; Ma, J.; Xue, C.; Duan, Z. Effect of Organic Montmorillonite on the Cellular Structure and Mechanical Properties of POE/EVA/OMMT Nanocomposite Foams. Adv. Mater. Res. 2013, 641, 355–362. [Google Scholar] [CrossRef]
- Cao, X.; James Lee, L.; Widya, T.; Macosko, C. Polyurethane/clay nanocomposites foams: Processing, structure and properties. Polymer 2005, 46, 775–783. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, W.; Nie, W.; Wang, D. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam. Polym. Compos. 2015, 37, 2323–2332. [Google Scholar] [CrossRef]
- Chan, M.; Lau, K.; Wong, T.; Ho, M.; Hui, D. Mechanism of reinforcement in a nanoclay/polymer composite. Compos. Part B Eng. 2011, 42, 1708–1712. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, Z.; Chen, Y.; Wei, D.; Xu, T. Fabrication and mechanical properties of phenolic foam reinforced with graphene oxide. Polym. Compos. 2013, 35, 581–586. [Google Scholar] [CrossRef]
- China National Standards. GB/T 8624-2012: Classification for Burning Behavior of Building Materials and Products; China National Standards: Shenzhen, China, 2012. [Google Scholar]
- National Standards Authority of Ireland. EN 13501-1:2007. Fire Classification of Construction Products and Building Elements-Part1: Classification Using Data From Reaction to Fire Tests; National Standards Authority of Ireland: Dubline, Ireland, 2007. [Google Scholar]
- Wang, L.; Sánchez-Soto, M.; Abt, T.; Maspoch, M.L.; Santana, O.O. Microwave-crosslinked bio-based starch/clay aerogels. Polym. Int. 2016, 65, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Pan, H.; Shi, Y.; Yu, B.; Pan, Y.; Kim, M.L.; Song, L.; Hu, Y. Sandwich-like coating consisting of alternating montmorillonite and β-FeOOH for reducing the fire hazard of flexible polyurethane foam. ACS Sustain. Chem. Eng. 2015, 3, 3214–3223. [Google Scholar] [CrossRef]
- Del Saz-Orozco, B.; Alonso, M.V.; Oliet, M.; Domínguez, J.C.; Rojo, E.; Rodriguez, F. Lignin particle- and wood flour-reinforced phenolic foams: Friability, thermal stability and effect of hygrothermal aging on mechanical properties and morphology. Compos. Part B Eng. 2015, 80, 154–161. [Google Scholar] [CrossRef]
- Lv, G.; Li, Z.; Jiang, W.-T.; Chang, P.-H.; Liao, L. Interlayer configuration of ionic liquids in a Ca-montmorillonite as evidenced by FTIR, TG-DTG, and XRD analyses. Mater. Chem. Phys. 2015, 162, 417–424. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.; He, M.; Wang, W.; Wang, C. The combination of expandable graphite, organic montmorillonite, and magnesium hydrate as fire-retardant additives for ethylene-propylene-diene monomer/chloroprene rubber foams. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Wang, X.; Su, Q.; Hu, Y.; Wang, C.; Zheng, J. Structure and thermal stability of PMMA/MMT nanocomposites as denture base material. J. Therm. Anal. Calorim. 2013, 115, 1143–1151. [Google Scholar] [CrossRef]
- Pan, L.-Y.; Zhan, M.-S.; Wang, K. High-temperature-resistant polyimide/montmorillonite nanocomposite foams by solid blending. Polym. Eng. Sci. 2011, 51, 1397–1403. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, C.; Su, X. Synthesis and Thermal Properties of Boron-Nitrogen Containing Phenol Formaldehyde Resin/MMT Nanocomposites. Int. J. Polym. Mater. 2010, 59, 544–552. [Google Scholar] [CrossRef]
Samples | Viscosity (25 °C, mPa·s) | Solids Content (%) | Curing Time (75 °C, s) |
---|---|---|---|
BPR | 2840 ± 38 | 72.0 ± 0.6 | 254 ± 10 |
2% MBPR | 2930 ± 60 | 73.5 ± 0.3 | 624 ± 12 |
4% MBPR | 3050 ± 87 | 76.3 ± 0.1 | 811 ± 36 |
6% MBPR | 7250 ± 56 | 74.9 ± 0.6 | 817 ± 32 |
8% MBPR | 10800 ± 75 | 73.5 ± 0.3 | 818 ± 20 |
Wave Number (cm−1) | Vibration | Assignment |
---|---|---|
3625 | ν (OH) | Al–OH stretching vibration |
3418 | ν (OH) | Si–OH stretching vibration |
3315 | ν (OH) | Phenolic OH and aliphatic OH stretching vibration |
2917,2866 | ν (CH2) | Aliphatic CH2 asymmetric stretching vibration |
1612 | ν (C=C) | C=C aromatic ring stretching vibration |
1035 | ν (Si–O) | Si–O stretching (in-plane) vibration |
Samples | BPF | 2% MBPF | 4% MBPF | 6% MBPF | 8% MBPF |
---|---|---|---|---|---|
Mean Cell size (μm) | 162 ± 36 | 246 ± 22 | 188 ± 10 | 185 ± 31 | 174 ± 14 |
Samples | T5% (°C) | Tmax (°C) | Residue at 800 °C (%) |
---|---|---|---|
BPF | 160 | 492 | 46.99 |
2% MBPF | 166 | 498 | 47.03 |
4% MBPF | 179 | 501 | 47.50 |
6% MBPF | 171 | 499 | 47.93 |
8% MBPF | 165 | 498 | 47.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Yu, Y.; Chang, M.; Chang, J. Preparation and Characterization of Bio-oil Phenolic Foam Reinforced with Montmorillonite. Polymers 2019, 11, 1471. https://doi.org/10.3390/polym11091471
Xu P, Yu Y, Chang M, Chang J. Preparation and Characterization of Bio-oil Phenolic Foam Reinforced with Montmorillonite. Polymers. 2019; 11(9):1471. https://doi.org/10.3390/polym11091471
Chicago/Turabian StyleXu, Pingping, Yuxiang Yu, Miaomiao Chang, and Jianmin Chang. 2019. "Preparation and Characterization of Bio-oil Phenolic Foam Reinforced with Montmorillonite" Polymers 11, no. 9: 1471. https://doi.org/10.3390/polym11091471
APA StyleXu, P., Yu, Y., Chang, M., & Chang, J. (2019). Preparation and Characterization of Bio-oil Phenolic Foam Reinforced with Montmorillonite. Polymers, 11(9), 1471. https://doi.org/10.3390/polym11091471