Pd–Co Nanoparticles Supported on Calcined Mg–Fe Hydrotalcites for the Suzuki–Miyaura Reaction in Water with High Turnover Numbers
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Method
3.2. Synthesis of Pd–Co–CHT
3.3. General Procedure for the Suzuki–Miyaura Coupling Catalyzed by Pd–Co–CHT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schwan, A.L. Palladium catalyzed cross-coupling reactions for phosphorus-carbon bond formation. Chem. Soc. Rev. 2004, 33, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Terao, J.; Kambe, N. Cross-Coupling Reaction of Alkyl Halides with Grignard Reagents Catalyzed by Ni, Pd, or Cu Complexes with pi-Carbon Ligand(s). Acc. Chem. Res. 2008, 41, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Bariwal, J.; Van der Eycken, E. C-N bond forming cross-coupling reactions: An overview. Chem. Soc. Rev. 2013, 42, 9283–9303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-F.; Shi, Z.-J. Upgrading Cross-Coupling Reactions for Biaryl Syntheses. Acc. Chem. Res. 2019, 52, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Capricho, J.; Yawer, M.A. Synthesis of Biaryls via Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments. Adv. Synth. Catal. 2016, 358, 3320–3349. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Alonso, F.; Tyurin, V. The Suzuki-Miyaura reaction after the Nobel prize. Coord. Chem. Rev. 2019, 385, 137–173. [Google Scholar] [CrossRef]
- Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem. 2019, 21, 381–405. [Google Scholar] [CrossRef]
- Pereira, R.; Iglesias, B.; de Lera, A.R. Regioselective palladium-catalyzed cross-coupling reactions in the synthesis of novel 2,3-disubstituted thiophene derivatives. Tetrahedron 2001, 57, 7871–7881. [Google Scholar] [CrossRef]
- Denmark, S.E.; Yang, S.M. Sequential ring-closing metathesis/Pd-catalyzed, Si-assisted cross-coupling reactions: General synthesis of highly substituted unsaturated alcohols and medium-sized rings containing a 1,3-cis-cis diene unit. Tetrahedron 2004, 60, 9695–9708. [Google Scholar] [CrossRef]
- So, C.M.; Kwong, F.Y. Palladium-catalyzed cross-coupling reactions of aryl mesylates. Chem. Soc. Rev. 2011, 40, 4963–4972. [Google Scholar] [CrossRef]
- Han, F.-S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 2013, 42, 5270–5298. [Google Scholar] [CrossRef] [PubMed]
- Kinney, R.G.; Tjutrins, J.; Torres, G.M.; Liu, N.J.B.; Kulkarni, O.; Arndtsen, B.A. A general approach to intermolecular carbonylation of arene C-H bonds to ketones through catalytic aroyl triflate formation. Nat. Chem. 2018, 10, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent Applications of Magnetically Recoverable Nanocatalysts in C-C and C-X Coupling Reactions. ChemCatChem 2015, 7, 1736–1789. [Google Scholar] [CrossRef]
- Baeza, A.; Guillena, G.; Ramón, D.J. Magnetite and Metal-Impregnated Magnetite Catalysts in Organic Synthesis: A Very Old Concept with New Promising Perspectives. ChemCatChem 2016, 8, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahzadeh, M.; Issaabadi, Z.; Tohidi, M.M.; Sajadi, S.M. Recent Progress in Application of Graphene Supported Metal Nanoparticles in C-C and C-X Coupling Reactions. Chem. Rec. 2018, 18, 165–229. [Google Scholar] [CrossRef]
- Hui, Y.H.; Zhang, S.W.; Wang, W.T. Recent Progress in Catalytic Oxidative Transformations of Alcohols by Supported Gold Nanoparticles. Adv. Synth. Catal. 2019, 361, 2215–2235. [Google Scholar] [CrossRef]
- Dong, Z.; Yuan, J.; Xiao, Y.; Mao, P.; Wang, W. Room Temperature Chemoselective Deoxygenation of Aromatic Ketones and Aldehydes Promoted by a Tandem Pd/TiO2 + FeCl3 Catalyst. J. Org. Chem. 2018, 83, 11067–11073. [Google Scholar] [CrossRef]
- Suresh Kumar, B.; Amali, A.J.; Pitchumani, K. Fabrication of Pd Nanoparticles Embedded C@Fe3O4 Core-Shell Hybrid Nanospheres: An Efficient Catalyst for Cyanation in Aryl Halides. ACS Appl. Mater. Interfaces 2015, 7, 22907–22917. [Google Scholar] [CrossRef]
- Li, D.D.; Zhang, J.W.; Cai, C. Pd Nanoparticles Supported on Cellulose as a Catalyst for Vanillin Conversion in Aqueous Media. J. Org. Chem. 2018, 83, 7534–7538. [Google Scholar] [CrossRef]
- Ghorbani-Choghamarani, A.; Nikpour, F.; Ghorbani, F.; Havasi, F. Anchoring of Pd(ii) complex in functionalized MCM-41 as an efficient and recoverable novel nano catalyst in C–C, C–O and C–N coupling reactions using Ph3SnCl. RSC Adv. 2015, 5, 33212–33220. [Google Scholar] [CrossRef]
- Saha, A.; Wu, C.-M.; Peng, R.; Koodali, R.; Banerjee, S. Facile Synthesis of 1,3,5-Triarylbenzenes and 4-Aryl-NH-1,2,3-Triazoles Using Mesoporous Pd-MCM-41 as Reusable Catalyst. Eur. J. Org. Chem. 2019, 2019, 104–111. [Google Scholar] [CrossRef]
- Khazaei, A.; Khazaei, M.; Nasrollahzadeh, M. Nano-Fe3O4@SiO2 supported Pd(0) as a magnetically recoverable nanocatalyst for Suzuki coupling reaction in the presence of waste eggshell as low-cost natural base. Tetrahedron 2017, 73, 5624–5633. [Google Scholar] [CrossRef]
- da Costa, A.P.; Nunes, D.R.; Tharaud, M.; Oble, J.; Poli, G.; Rieger, J. Palladium(0) Nanoparticles Embedded in Core-shell Nanogels as Recoverable Catalysts for the Mizoroki-Heck Reaction. ChemCatChem 2017, 9, 2167–2175. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Li, H.X.; Zha, C.H.; Young, D.J.; Li, H.Y.; Lang, J.P. Visible-Light-Enhanced Suzuki-Miyaura Reactions of Aryl Chlorides in Water with Pd NPs Supported on a Conjugated Nanoporous Polycarbazole. ChemSusChem 2019. [Google Scholar] [CrossRef] [PubMed]
- Farhang, Y.; Taheri-Nassaj, E.; Rezaei, M. Pd doped LaSrCuO4 perovskite nano-catalysts synthesized by a novel solid state method for CO oxidation and Methane combustion. Ceram. Int. 2018, 44, 21499–21506. [Google Scholar] [CrossRef]
- Koizumi, Y.; Jin, X.; Yatabe, T.; Miyazaki, R.; Hasegawa, J.Y.; Nozaki, K.; Mizuno, N.; Yamaguchi, K. Selective Synthesis of Primary Anilines from NH3 and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface. Angew. Chem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Shelkar, R.S.; Gund, S.H.; Nagarkar, J.M. Nano Pd–Fe3O4@Alg beads: As an efficient and magnetically separable catalyst for Suzuki, Heck and Buchwald–Hartwig coupling reactions. RSC Adv. 2014, 4, 53387–53396. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, B.; Wang, L.; Yi, X.F.; Wang, C.T.; Wang, G.X.; Dai, Z.F.; Zheng, A.M.; Xiao, F.S. Zirconium Oxide Supported Palladium Nanoparticles as a Highly Efficient Catalyst in the Hydrogenation-Amination of Levulinic Acid to Pyrrolidones. ChemCatChem 2017, 9, 2661–2667. [Google Scholar] [CrossRef]
- Chatterjee, T.; Dey, R.; Ranu, B.C. ZnO-supported Pd nanoparticle-catalyzed ligand- and additive-free cyanation of unactivated aryl halides using K4[Fe(CN)6]. J. Org. Chem. 2014, 79, 5875–5879. [Google Scholar] [CrossRef]
- Sadhasivam, V.; Balasaravanan, R.; Chithiraikumar, C.; Siva, A. Palladium Nanoparticles Supported on Nitrogen-rich Containing Melamine-based Microporous Covalent Triazine Polymers as Efficient Heterogeneous Catalyst for C-Se Coupling Reactions. ChemCatChem 2018, 10, 3833–3844. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. J. Am. Chem. Soc. 2017, 139, 17082–17088. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Bi, X.; Yu, C.; Chen, G.; Chen, B.; Jing, Z.; Zhao, P. Ball-milling synthesized hydrotalcite supported Cu–Mn mixed oxide under solvent-free conditions: An active catalyst for aerobic oxidative synthesis of 2-acylbenzothiazoles and quinoxalines. Green Chem. 2018, 20, 4638–4644. [Google Scholar] [CrossRef]
- Wang, Y.B.; Yu, K.; Lei, D.; Si, W.; Feng, Y.J.; Lou, L.L.; Liu, S.X. Basicity-Tuned Hydrotalcite-Supported Pd Catalysts for Aerobic Oxidation of 5-Hydroxymethyl-2-furfural under Mild Conditions. ACS Sustain. Chem. Eng. 2016, 4, 4752–4761. [Google Scholar] [CrossRef]
- Karanjit, S.; Kashihara, M.; Nakayama, A.; Shrestha, L.K.; Ariga, K.; Namba, K. Highly active and reusable hydrotalcite-supported Pd(0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron 2018, 74, 948–954. [Google Scholar] [CrossRef]
- Burrueco, M.I.; Mora, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Hydrotalcite-supported palladium nanoparticles as catalysts for the Suzuki reaction of aryl halides in water. Appl. Catal. A Gen. 2014, 485, 196–201. [Google Scholar] [CrossRef]
- Jin, X.; Koizumi, Y.; Yamaguchi, K.; Nozaki, K.; Mizuno, N. Selective Synthesis of Primary Anilines from Cyclohexanone Oximes by the Concerted Catalysis of a Mg-Al Layered Double Hydroxide Supported Pd Catalyst. J. Am. Chem. Soc. 2017, 139, 13821–13829. [Google Scholar] [CrossRef] [PubMed]
- Comelli, N.A.; Ruiz, M.L.; Merino, N.A.; Lick, I.D.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Ponzi, M.I. Preparation and characterisation of calcined Mg/Al hydrotalcites impregnated with alkaline nitrate and their activities in the combustion of particulate matter. Appl. Clay Sci. 2013, 80, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.R.; Jiménez-Sanchidrián, C.; Mora, M. Suzuki cross-coupling reaction of fluorobenzene with heterogeneous palladium catalysts. J. Fluor. Chem. 2006, 127, 443–445. [Google Scholar] [CrossRef]
- Shaabani, A.; Hezarkhani, Z.; Nejad, M.K. AuCu and AgCu bimetallic nanoparticles supported on guanidine-modified reduced graphene oxide nanosheets as catalysts in the reduction of nitroarenes: Tandem synthesis of benzo[b][1,4]diazepine derivatives. RSC Adv. 2016, 6, 30247–30257. [Google Scholar] [CrossRef]
- Dhital, R.N.; Kamonsatikul, C.; Somsook, E.; Bobuatong, K.; Ehara, M.; Karanjit, S.; Sakurai, H. Low-temperature carbon-chlorine bond activation by bimetallic gold/palladium alloy nanoclusters: An application to Ullmann coupling. J. Am. Chem. Soc. 2012, 134, 20250–20253. [Google Scholar] [CrossRef]
- Antony, R.; Marimuthu, R.; Murugavel, R. Bimetallic Nanoparticles Anchored on Core–Shell Support as an Easily Recoverable and Reusable Catalytic System for Efficient Nitroarene Reduction. ACS Omega 2019, 4, 9241–9250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | Catalyst | Solvent | Base | Temp (°C) | Yield b |
---|---|---|---|---|---|
1 | Pd–CHT d | DMSO | K2CO3 | 110 | 93% |
2 | Pd–Co–CHT | DMSO | K2CO3 | 110 | 99% |
3 | Co–CHT | DMSO | K2CO3 | 110 | 0% |
4 | CHT | DMSO | K2CO3 | 110 | 0% |
5 | Pd–Co–CHT | DMF | K2CO3 | 110 | 98% |
6 | Pd–Co–CHT | toluene | K2CO3 | 100 | 92% |
7 | Pd–Co–CHT | water | K2CO3 | 80 | 99% |
8 | Pd–Co–CHT | water | - | 80 | 0% |
9 c | Pd–Co–CHT | water | K2CO3 | 80 | 99% |
10 | Pd–CHT | water | K2CO3 | 80 | 94% |
11 | Pd–Co–CHT | water | K2CO3 | 60 | 90% |
Entry | Aryl Halides | Boronic Acid | Product | Yield b |
---|---|---|---|---|
1 | PhI | 3,4-DiMeO-C6H4B(OH)2 | 3b | 90 |
2 | PhI | 3-MeO-C6H4B(OH)2 | 3c | 97 |
3 | PhI | 4-MeO-C6H4B(OH)2 | 3d | 99 |
4 | PhI | 4-F-C6H4B(OH)2 | 3e | 94 |
5 | PhI | 4-CH3CO-C6H4B(OH)2 | 3f | 92 |
6 | PhBr | PhB(OH)2 | 3a | 52 |
7 | 4-Cl-C6H4I | PhB(OH)2 | 3g | 99 |
8 | 4-F-C6H4I | PhB(OH)2 | 3h | 99 |
9 | 3-Cl-C6H4I | PhB(OH)2 | 3i | 99 |
10 | 4-CH3CO-C6H4I | PhB(OH)2 | 3f | 97 |
11 | 4-tBu-C6H4I | PhB(OH)2 | 3j | 99 |
12 | 4-MeO-C6H4I | PhB(OH)2 | 3d | 98 |
13 | 3-MeO-C6H4I | PhB(OH)2 | 3c | 97 |
14 | 3,4-DiMe-C6H3I | PhB(OH)2 | 3k | 99 |
15 | 4-Me-C6H4I | PhB(OH)2 | 3l | 99 |
16 | 3-Me-C6H4I | PhB(OH)2 | 3m | 99 |
17 | 2-Me-C6H4I | PhB(OH)2 | 3n | 94 |
18 | 1-Iodonaphthal | PhB(OH)2 | 3o | 83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Gao, P.; Xiao, Y.; Chen, J.; Wang, W. Pd–Co Nanoparticles Supported on Calcined Mg–Fe Hydrotalcites for the Suzuki–Miyaura Reaction in Water with High Turnover Numbers. Catalysts 2019, 9, 1061. https://doi.org/10.3390/catal9121061
Dong Z, Gao P, Xiao Y, Chen J, Wang W. Pd–Co Nanoparticles Supported on Calcined Mg–Fe Hydrotalcites for the Suzuki–Miyaura Reaction in Water with High Turnover Numbers. Catalysts. 2019; 9(12):1061. https://doi.org/10.3390/catal9121061
Chicago/Turabian StyleDong, Zhenhua, Pengwei Gao, Yongmei Xiao, Jing Chen, and Wentao Wang. 2019. "Pd–Co Nanoparticles Supported on Calcined Mg–Fe Hydrotalcites for the Suzuki–Miyaura Reaction in Water with High Turnover Numbers" Catalysts 9, no. 12: 1061. https://doi.org/10.3390/catal9121061
APA StyleDong, Z., Gao, P., Xiao, Y., Chen, J., & Wang, W. (2019). Pd–Co Nanoparticles Supported on Calcined Mg–Fe Hydrotalcites for the Suzuki–Miyaura Reaction in Water with High Turnover Numbers. Catalysts, 9(12), 1061. https://doi.org/10.3390/catal9121061