Improvement Effect of Ni to Pd-Ni/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde
Abstract
1. Introduction
2. Results and Discussion
2.1. Texture Structure Measurement
2.2. TEM Analysis
2.3. XPS Analysis
2.4. Catalytic Performance
2.4.1. Hydrogenation of CAL to HALD over Pd-Ni/SBA-15
2.4.2. Effect of H2 Pressure over 0.2%Pd-1.2%Ni/SBA-15
2.4.3. Effect of Reaction Temperature over 0.2%Pd-1.2%Ni/SBA-15
2.4.4. Effect of Reaction Time over 0.2%Pd-1.2%Ni/SBA-15
2.4.5. Activity Stability of 0.2%Pd-1.2%Ni/SBA-15
3. Experimental Sections
3.1. Chemicals
3.2. Catalyst Preparation
3.3. Catalyst Characterizations
3.4. Hydrogenation of CAL
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hong, Y.C.; Sun, K.Q.; Zhang, G.R.; Zhong, R.Y.; Xu, B.Q. Fully dispersed Pt entities on nano-Au dramatically enhance the activity of gold for chemoselective hydrogenation catalysis. Chem. Commun. 2011, 47, 1300–1302. [Google Scholar] [CrossRef] [PubMed]
- Yepez, A.; Hidalgo, J.M.; Pineda, A.; Černý, R.; Jíša, P.; Garcia, A.; Romero, A.A.; Luque, R. Mechanistic insights into the hydroconversion of cinnamaldehyde using mechanochemicallys ynthesized Pd/Al-SBA-15 catalysts. Green Chem. 2015, 17, 565–572. [Google Scholar] [CrossRef]
- Chen, S.J.; Meng, L.; Chen, B.X.; Chen, W.Y.; Duan, X.Z.; Huang, X.; Zhang, B.S.; Fu, H.B.; Wan, Y. Poison Tolerance to the Selective Hydrogenation of Cinnamaldehyde in Water over an Ordered Mesoporous Carbonaceous Composite Supported Pd Catalyst. ACS Catal. 2017, 7, 2074–2087. [Google Scholar] [CrossRef]
- Reddy, B.M.; Kumar, G.M.; Ganesh, I.; Khan, A. Vapour phase hydrogenation of cinnamaldehyde over silica supported transition metal-based bimetallic catalysts. J. Mol. Catal. A Chem. 2006, 247, 80–87. [Google Scholar] [CrossRef]
- Lin, W.W.; Cheng, H.Y.; He, L.M.; Yu, Y.C.; Zhao, F.Y. High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. J. Catal. 2013, 303, 110–116. [Google Scholar] [CrossRef]
- Ji, X.W.; Niu, X.Y.; Li, B.; Han, Q.; Yuan, F.L.; Zaera, F.; Zhu, Y.J.; Fu, H.G. Selective Hydrogenation of Cinnamaldehyde to Cinnamal Alcohol over Platinum/Graphene Catalysts. ChemCatChem 2014, 6, 3246–3253. [Google Scholar] [CrossRef]
- Han, Q.; Liu, Y.F.; Wang, D.; Yuan, F.L.; Niu, X.Y.; Zhu, Y.J. Effect of carbon nanosheets with different graphitization degrees as a support of noble metals on selective hydrogenation of cinnamaldehyde. RSC Adv. 2016, 6, 98356–98364. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y.J.; Tian, C.G.; Wang, L.; Zhou, W.; Dong, Y.L.; Han, Q.; Liu, Y.F.; Yuan, F.L.; Fu, H.G. Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo2N/SBA-15. Catal. Sci. Technol. 2016, 6, 2403–2412. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y.J.; Tian, C.G.; Wang, L.; Zhou, W.; Dong, Y.L.; Yan, H.J.; Fu, H.G. Synergistic Effect of Tungsten Nitride and Palladium for the Selective Hydrogenation of Cinnamaldehyde at the C=C bond. ChemCatChem 2016, 8, 1718–1726. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, D.; Yuan, F.L.; Han, Q.; Dong, Y.L.; Liu, Y.F.; Niu, X.Y.; Zhu, Y.J. An Effective Co-promoted Platinum of Co–Pt/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. Catal. Lett. 2016, 146, 1535–1543. [Google Scholar] [CrossRef]
- Bhogeswararao, S.; Srinivas, D. Intramolecular selective hydrogenation of cinnamaldehyde over CeO2–ZrO2-supported Pt catalysts. J. Catal. 2012, 285, 31–40. [Google Scholar] [CrossRef]
- Wei, S.P.; Zhao, Y.T.; Fan, G.L.; Yang, L.; Li, F. Structure-dependent selective hydrogenation of cinnamaldehyde over high-surface-area CeO2-ZrO2 composites supported Pt nanoparticles. Chem. Eng. J. 2017, 322, 234–245. [Google Scholar] [CrossRef]
- Kahsar, K.R.; Schwartz, D.K.; Medlin, J.W. Stability of self-assembled monolayer coated Pt/Al2O3 catalysts for liquid phase hydrogenation. J. Mol. Catal. A Chem. 2015, 396, 188–195. [Google Scholar] [CrossRef][Green Version]
- Vriamont, C.; Haynes, T.; McCague-Murphy, E.; Pennetreau, F.; Riant, O.; Hermans, S. Covalently and non-covalently immobilized clusters onto nanocarbons as catalysts precursors for cinnamaldehyde selective hydrogenation. J. Catal. 2015, 329, 389–400. [Google Scholar] [CrossRef]
- Ide, M.S.; Hao, B.; Neurock, M.; Davis, R.J. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts. ACS Catal. 2012, 2, 671–683. [Google Scholar] [CrossRef]
- Chen, H.N.; Cullen, D.A.; Larese, J.Z. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials. J. Phys. Chem. C 2015, 119, 28885–28894. [Google Scholar] [CrossRef]
- Machado, B.F.; Gomes, H.T.; Serp, P.; Kalck, P.; Faria, J.L. Liquid-Phase Hydrogenation of Unsaturated Aldehydes: Enhancing Selectivity of Multiwalled Carbon Nanotube-Supported Catalysts by Thermal Activation. ChemCatChem 2010, 2, 190–197. [Google Scholar] [CrossRef]
- Reyes, P.; Rojas, H.; Fierro, J.L.G. Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts. Appl. Catal. A 2003, 248, 59–65. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.G.; Zhou, R.X. Bimetallic Pt-Co catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol: Preparation and characterization. J. Mol. Catal. A Chem. 2008, 279, 140–146. [Google Scholar] [CrossRef]
- Tsang, S.C.; Cailuo, N.; Oduro, W.; Kong, A.T.S.; Clifton, L.; Yu, K.M.K.; Thiebaut, B.; Cookson, J.; Bishop, P. Engineering Preformed Cobalt-Doped Platinum Nanocatalysts for Ultraselective Hydrogenation. ACS Nano 2008, 2, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, V.S.; Diez, A.S.; Dennehy, M.; Volpe, M.A. Cu incorporated MCM-48 for the liquid phase hydrogenation of cinnamaldehyde. Microporous Mesoporous Mater. 2011, 141, 207–213. [Google Scholar] [CrossRef]
- Siddqui, N.; Sarkar, B.; Pendem, C.; Khatun, R.; Konthala, L.N.S.; Sasaki, T.; Bordoloia, A.; Bal, R. Highly selective transfer hydrogenation of α,β-unsaturated carbonyl compounds using Cu-based nanocatalysts. Catal. Sci. Technol. 2017, 7, 2828–2837. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.N.; Wei, X.J.; Fang, Q.H.; Jiang, X.M. The shape effect of La2O2CO3 in Pd/La2O2CO3 catalyst for selective hydrogenation of cinnamaldehyde. Appl. Catal. A 2017, 543, 196–200. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Gurrala, L.; Gogoi, P.; Chilukuri, S.V. Hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over Pd nanoparticles deposited on nitrogen-doped mesoporous carbon. RSC Adv. 2016, 6, 44333–44340. [Google Scholar] [CrossRef]
- Vicente, A.; Ekou, T.; Lafaye, G.; Especel, C.; Marécot, P.; Williams, C.T. Influence of the nature of the precursor salts on the properties of Rh–Ge/TiO2 catalysts for citral hydrogenation. J. Catal. 2010, 275, 202–210. [Google Scholar] [CrossRef]
- Reyes, P.; Aguirre, M.C.; Fierro, J.L.G.; Santori, G.; Ferretti, O. Hydrogenation of crotonaldehyde on Rh-Sn/SiO2 catalysts prepared by reaction of tetrabutyltin on prereduced Rh/SiO2 precursors. J. Mol. Catal. A Chem. 2002, 184, 431–441. [Google Scholar] [CrossRef]
- Prakash, M.G.; Mahalakshmy, R.; Krishnamurthy, K.R.; Viswanathan, B. Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: Role of catalyst preparation methods. Catal. Sci. Technol. 2015, 5, 3313–3321. [Google Scholar] [CrossRef]
- Zaramello, L.; Albuquerque, B.L.; Domingos, J.B.; Philippot, K. Kinetic investigation into the chemoselective hydrogenation of α,β-unsaturated carbonyl compounds catalyzed by Ni(0) nanoparticles. Dalton Trans. 2017, 46, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Gryglewicz, S.; Sliwak, A.; Cwikła, J.; Gryglewicz, G. Performance of Carbon Nanofiber and Activated Carbon Supported Nickel Catalysts for Liquid-Phase Hydrogenation of Cinnamaldehyde into Hydrocinnamaldehyde. Catal. Lett. 2014, 144, 62–69. [Google Scholar] [CrossRef]
- Yang, X.; Chen, D.; Liao, S.J.; Song, H.Y.; Li, Y.W.; Fu, Z.Y.; Su, Y.L. High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation. J. Catal. 2012, 291, 36–43. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Porosoff, M.D.; Weiner, J.L.; Lu, S.L.; Zhu, Y.X.; Chen, J.G. Controlling hydrogenation of C=O and C=C bonds in cinnamaldehyde using silica supported Co-Pt and Cu-Pt bimetallic catalysts. Appl. Catal. A 2012, 419–420, 126–132. [Google Scholar] [CrossRef]
- Sun, K.Q.; Hong, Y.C.; Zhang, G.R.; Xu, B.Q. Synergy between Pt and Au in Pt-on-Au Nanostructures for Chemoselective Hydrogenation Catalysis. ACS Catal. 2011, 1, 1336–1346. [Google Scholar] [CrossRef]
- Wu, S.H.; Mou, C.Y.; Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, L.F.; Hamoudi, S.; Belkacemi, K. Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1, 97–154. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Zhu, J.J.; Wang, T.; Xu, X.L.; Xiao, P.; Li, J.L. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis. Appl. Catal. B 2013, 130–131, 197–217. [Google Scholar] [CrossRef]
- Loricera, C.V.; Pawelec, B.; Infantes-Molinaa, A.; Álvarez-Galvána, M.C.; Huirache-Acuña, R.; Nava, R.; Fierro, J.L.G. Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. Catal. Today 2011, 172, 103–110. [Google Scholar] [CrossRef]
- Ungureanu, A.; Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A.S.; Dumitriu, E. Composition-Dependent morphostructural properties of Ni−Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica. ACS Appl. Mater. Interfaces 2013, 5, 3010–3025. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Pachamuthu, M.P.; Isaacs, M.A.; Kumar, S.; Lee, A.F.; Sekaran, G. Cu and Fe oxides dispersed on SBA-15: A Fenton type bimetallic catalyst for N,N-diethyl-p-phenyl diamine degradation. Appl. Catal. B 2016, 199, 323–330. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, C.H.; Chen, L.; Chen, J.M.; Guan, Y.J.; Wu, P. Factors influencing the activity of SiO2 supported bimetal Pd-Ni catalyst for hydrogenation of a-angelica lactone: Oxidation state, particle size, and solvents. J. Catal. 2017, 351, 10–18. [Google Scholar] [CrossRef]
- Tang, W.X.; Deng, Y.Z.; Chen, Y.F. Promoting effect of acid treatment on Pd-Ni/SBA-15 catalyst for complete oxidation of gaseous benzene. Catal. Commun. 2017, 89, 86–90. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wang, Y.C.; Wang, Y.; Cao, J.L.; Kang, P.; Tang, Q.J.; Ma, M.J. Highly Dispersed PdNPs/α-Al2O3 Catalyst for the Selective Hydrogenation of Acetylene Prepared with Monodispersed Pd Nanoparticles. Catalysts 2017, 7, 128–137. [Google Scholar] [CrossRef]
- Volokitin, Y.; Sinzig, J.; Jongh, L.J.; Schmid, G.; Vargaftik, M.N.; Moiseev, I.I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623. [Google Scholar] [CrossRef]
- Fu, X.Y.; Wang, Y.; Wu, N.Z.; Gui, L.L.; Tang, Y.Q. Surface modification of small platinum nanoclusters with alkylamine and alkylthiol: An XPS study on the influence of organic ligands on the Pt 4f binding energies of small platinum nanoclusters. J. Colloid Interface Sci. 2001, 243, 326–330. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S. Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-Ray Photoelectron Spectroscopy. Nanostruct. Mater. 1999, 11, 1181–1193. [Google Scholar] [CrossRef]
- Liu, C.L.; Nan, C.S.; Fan, G.L.; Yang, L.; Li, F. Facile synthesis and synergistically acting catalytic performance of supported bimetallic PdNi nanoparticle catalysts for selective hydrogenation of citral. Mol. Catal. 2017, 436, 237–247. [Google Scholar] [CrossRef]
- Cao, N.; Yang, L.; Dai, H.M.; Liu, T.; Su, J.; Wu, X.J.; Luo, W.; Cheng, G.Z. Immobilization of ultrafine bimetallic Ni−Pt nanoparticles inside the pores of metal−organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine. Inorg. Chem. 2014, 53, 10122–10128. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.W.; Fu, Y.S.; He, G.Y.; Sun, X.Q.; Wang, X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl. Catal. B 2017, 200, 39–46. [Google Scholar] [CrossRef]
- Zhong, D.C.; Aranishi, K.; Singh, A.k.; Demircib, U.B.; Xu, Q. The synergistic effect of Rh–Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage. Chem. Commun. 2012, 48, 11945–11947. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.F.; Li, F.B.; Huang, Z.J.; Yuan, G.Q. Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts. Appl. Catal. A 2015, 500, 23–29. [Google Scholar] [CrossRef]
- Poltarzewski, Z.; Galvagno, S.; Pietropaolo, R.; Staiti, P. Hydrogenation of α,β-Unsaturated Aldehydes over Pt-Sn/Nylon. J. Catal. 1986, 102, 190–198. [Google Scholar] [CrossRef]
- Bus, E.; Prins, R.; Bokhoven, J.A. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts. Catal. Commun. 2007, 8, 1397–1402. [Google Scholar] [CrossRef]
- Merlo, A.B.; Machado, B.F.; Vetere, V.; Faria, J.L.; Casella, M.L. PtSn/SiO2 catalysts prepared by surface controlled reactions for the selective hydrogenation of cinnamaldehyde. Appl. Catal. A 2010, 383, 43–49. [Google Scholar] [CrossRef]
- Shi, J.J.; Nie, R.F.; Chen, P.; Hou, Z.Y. Selective hydrogenation of cinnamaldehyde over reduced grapheme oxide supported Pt catalyst. Catal. Commun. 2013, 41, 101–105. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.T.; Li, L.S.; Wang, X.M.; Haller, G.L.; Yang, Y.H. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J. Catal. 2010, 276, 314–326. [Google Scholar] [CrossRef]
- Hammoudeh, A.; Mahmoud, S. Selective hydrogenation of cinnamaldehyde over Pd/SiO2 catalysts: Selectivity promotion by alloyed Sn. J. Mol. Catal. A Chem. 2003, 203, 231–239. [Google Scholar] [CrossRef]
- Cairns, G.R.; Cross, R.J.; Stirling, D. Hydrogenation of cinnamaldehyde using catalysts prepared from supported palladium phosphine complexes. J. Catal. 1997, 166, 89–97. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.F.; Yuan, F.L.; Niu, X.Y.; Zhu, Y.J. Efficient production of the liquid fuel 2,5-Dimethylfuran from 5-Hydroxymethylfurfural in the Absence of Acid Additive over bimetallic PdAu supported on graphitized carbon. Energy Fuels 2017, 31, 6364–6373. [Google Scholar] [CrossRef]
- Zhao, B.H.; Chen, J.G.; Liu, X.; Liu, Z.W.; Hao, Z.P.; Xiao, J.L.; Liu, Z.T. Selective Hydrogenation of Cinnamaldehyde over Pt and Pd Supported on Multiwalled Carbon Nanotubes in a CO2-Expanded Alcoholic Medium. Ind. Eng. Chem. Res. 2012, 51, 11112–11121. [Google Scholar] [CrossRef]
- Galletti, A.M.R.; Antonetti, C.; Venezia, A.M.; Giambastiani, G. An easy microwave-assisted process for the synthesis of nanostructured palladium catalysts and their use in the selective hydrogenation of cinnamaldehyde. Appl. Catal. A 2010, 385, 124–131. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.P.; Du, L.; Long, L.Z.; Wang, T.J.; Ma, L.L.; Li, X.J.; Liao, S.J. High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature. RSC Adv. 2014, 4, 63062–63069. [Google Scholar] [CrossRef]
- Ribeiro, P.H.Z.; Matsubara, E.Y.; Rosolen, M.; Donate, P.M.; Gunnella, R. Palladium decoration of hybrid carbon nanotubes/charcoal composite and its catalytic behavior in the hydrogenation of trans-cinnamaldehyde. J. Mol. Catal. A Chem. 2015, 410, 34–40. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.M.; Fan, B.B.; Chen, Y.F.; Lv, W.M.; Lu, N.Y.; Li, R.F. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde. Catal. Commun. 2014, 57, 119–123. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Ikushima, Y.; Chatterjee, M.; Shiraia, M.; Arai, M. An effective and recyclable catalyst for hydrogenation of α,β-unsaturated aldehydes into saturated aldehydes in supercritical carbon dioxide. Green Chem. 2003, 5, 76–79. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed]
Sample | Metal Content a (wt %) | SBET b (m2/g) | Vpore b (cm3/g) | Pore Size b (nm) | |
---|---|---|---|---|---|
Pd | Ni | ||||
SBA-15 | - | - | 745 | 1.06 | 6.1 |
0.2%Pd/SBA-15 | 0.16 | - | 635 | 1.04 | 6.0 |
0.2%Pd-0.4%Ni/SBA-15 | 0.18 | 0.40 | 627 | 1.03 | 6.0 |
0.2%Pd-0.7%Ni/SBA-15 | 0.18 | 0.69 | 595 | 0.97 | 6.0 |
0.2%Pd-1.2%Ni/SBA-15 | 0.19 | 1.24 | 578 | 0.96 | 6.0 |
0.2%Pd-1.2%Ni/SBA-15-used c | 0.17 | 1.20 | 597 | 1.01 | 6.1 |
Sample | Pd Species | Pd Species BE (eV) | Content of Pd Species (%) | |
---|---|---|---|---|
3d5/2 | 3d3/2 | |||
0.2%Pd/SBA-15 | Pd0 | 335.0 | 340.6 | 43 |
Pd2+ | 337.6 | 342.7 | 57 | |
0.2%Pd-0.4%Ni/SBA-15 | Pd0 | 335.1 | 340.7 | 61 |
Pd2+ | 337.7 | 342.9 | 39 | |
0.2%Pd-0.7%Ni/SBA-15 | Pd0 | 335.4 | 341.0 | 71 |
Pd2+ | 337.9 | 343.1 | 29 | |
0.2%Pd-1.2%Ni/SBA-15 | Pd0 | 335.5 | 341.0 | 90 |
Pd2+ | 338.0 | 343.0 | 10 | |
0.2%Pd-1.2%Ni/SBA-15 used | Pd0 | 335.4 | 340.9 | 79 |
Pd2+ | 337.9 | 342.9 | 21 |
Sample | Conversion (%) | Selectivity (%) | |||
---|---|---|---|---|---|
HALD | HALC | COL | Others | ||
1.2%Ni/SBA-15 | 29.0 | 13.9 | 12.1 | 0.6 | 73.4 |
0.2%Pd/SBA-15 | 49.5 | 48.0 | 7.4 | 1.4 | 42.7 |
0.2%Pd-0.4%Ni/SBA-15 | 60.6 | 66.4 | 10.6 | 0.8 | 22.2 |
0.2%Pd-0.7%Ni/SBA-15 | 90.9 | 83.2 | 10.9 | 0.1 | 5.8 |
0.2%Pd-1.2%Ni/SBA-15 | 96.3 | 87.8 | 11.7 | 0.2 | 0.3 |
H2 Pressure (bar) | Conversion (%) | Selectivity (%) | |||
---|---|---|---|---|---|
HALD | HALC | COL | Others | ||
8 | 86.3 | 71.2 | 9.4 | 0.4 | 19.0 |
10 | 87.3 | 80.7 | 9.5 | 0.1 | 9.7 |
12 | 96.3 | 87.8 | 11.7 | 0.2 | 0.3 |
14 | 98.1 | 79.7 | 12.6 | 0.1 | 7.6 |
16 | 99.8 | 76.7 | 14.4 | 0 | 8.9 |
Temperature (°C) | Conversion (%) | Selectivity (%) | |||
---|---|---|---|---|---|
HALD | HALC | COL | Others | ||
40 | 30.1 | 52.8 | 9.9 | 1.6 | 35.7 |
60 | 52.6 | 74.5 | 10.9 | 0.8 | 13.8 |
80 | 96.3 | 87.8 | 11.7 | 0.2 | 0.3 |
100 | 99.5 | 84.3 | 15.0 | 0.1 | 0.6 |
Time (h) | Conversion (%) | Selectivity (%) | |||
---|---|---|---|---|---|
HALD | HALC | COL | Others | ||
0.5 | 71.8 | 87.3 | 11.7 | 0.1 | 0.9 |
1 | 79.7 | 86.3 | 11.5 | 0.1 | 2.1 |
2 | 96.3 | 87.8 | 11.7 | 0.2 | 0.3 |
3 | 100 | 85.6 | 11.9 | 0.4 | 2.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Liu, Y.; Li, J.; Li, R.; Yuan, F.; Zhu, Y. Improvement Effect of Ni to Pd-Ni/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde. Catalysts 2018, 8, 200. https://doi.org/10.3390/catal8050200
Han S, Liu Y, Li J, Li R, Yuan F, Zhu Y. Improvement Effect of Ni to Pd-Ni/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde. Catalysts. 2018; 8(5):200. https://doi.org/10.3390/catal8050200
Chicago/Turabian StyleHan, Shiying, Yunfei Liu, Jiang Li, Rui Li, Fulong Yuan, and Yujun Zhu. 2018. "Improvement Effect of Ni to Pd-Ni/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde" Catalysts 8, no. 5: 200. https://doi.org/10.3390/catal8050200
APA StyleHan, S., Liu, Y., Li, J., Li, R., Yuan, F., & Zhu, Y. (2018). Improvement Effect of Ni to Pd-Ni/SBA-15 Catalyst for Selective Hydrogenation of Cinnamaldehyde to Hydrocinnamaldehyde. Catalysts, 8(5), 200. https://doi.org/10.3390/catal8050200