Integrated Technology of CO2 Adsorption and Catalysis
Abstract
1. Introduction
2. Technical Principle and Coordination Mechanism
3. Progress of Key Material System
3.1. Metal–Organic Framework (MOF)-Based Composites
3.2. Alkali Metal-Modified Oxides
3.3. Carbon-Based Hybrid Materials
4. Reactor Design and Engineering Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohapatra, S.; Adamowicz, W.; Boxall, P. Dynamic technique and scale effects of economic growth on the environment. Energy Econ. 2016, 57, 256–264. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Zhang, X.; Franz, K.J.; Jia, G. Water regulation mitigates but does not eliminate water scarcity under rapid economic growth in the Haihe River basin. Resour. Conserv. Recycl. 2025, 215, 108098. [Google Scholar] [CrossRef]
- Gatheru Waigi, M.; Sun, K.; Gao, Y. Sphingomonads in Microbe-Assisted Phytoremediation: Tackling Soil Pollution. Trends Biotechnol. 2017, 35, 883–899. [Google Scholar] [CrossRef]
- Li, H.; Hou, X.; Xue, J.; Guo, T.; Zou, T.; Zhang, H.; Guo, X.; Li, M.; Hao, J. Practices and Empirical Insights from the National Research Program for Key Issues in Air Pollution in Beijing–Tianjin–Hebei and Surrounding Areas. Engineering 2023, 30, 20–26. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, H.; Wang, L.; Zhou, Q.; Huang, X. Effects of rare earth and acid rain pollution on plant chloroplast ATP synthase and element contents at different growth stages. Chemosphere 2018, 194, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Guo, S.; Zhang, M. Assessing customers’ perceived value of the anti-haze cosmetics under haze pollution. Sci. Total Environ. 2019, 685, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Feng, M.; Liu, H.; Luo, Y.; Li, W.; Song, D.; Tan, Q.; Ma, X.; Lu, K.; Zhang, Y. Atmospheric Oxidation Capacity Elevated during 2020 Spring Lockdown in Chengdu, China: Lessons for Future Secondary Pollution Control. Environ. Sci. Technol. 2024, 58, 8815–8824. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.T.; Ming, Y.; Li, W.; Hill, S.A. Change in the magnitude and mechanisms of global temperature variability with warming. Nat. Clim. Change 2017, 7, 743–748. [Google Scholar] [CrossRef]
- Yurtkuran, S.; Pata, U.K. The effect of nuclear and fossil fuel energy R&D expenditures on environmental qualities in Canada. Sustain. Energy Technol. Assess. 2024, 68, 103872. [Google Scholar]
- Arzaghi, M.; Squalli, J. The environmental impact of fossil fuel subsidy policies. Energy Econ. 2023, 126, 106980. [Google Scholar] [CrossRef]
- Hameed, S.N.; Jin, D.; Thilakan, V. A model for super El Niños. Nat. Commun. 2018, 9, 2528. [Google Scholar] [CrossRef]
- Hu, S. Refining El Niño projections. Nat. Clim. Change 2021, 11, 724–725. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, W. Unveiling the reality of carbon reduction: Is the Paris Agreement turning the world green or just painting it green? Energy Econ. 2025, 148, 108661. [Google Scholar] [CrossRef]
- Xie, C.; Wu, T.; Zhang, J.; Jie, W.; Zheng, M.; Zhao, H. Impact of Spatial Inhomogeneity in Atmospheric CO2 Concentration on Surface Air Temperature Variations. J. Meteorol. Res. 2024, 38, 969–982. [Google Scholar] [CrossRef]
- Annamalai, K. Breathing Planet Earth: Analysis of Keeling’s Data on CO2 and O2 with Respiratory Quotient (RQ), Part II: Energy-Based Global RQ and CO2 Budget. Energies 2024, 17, 1800. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Zhang, Z. Application of red mud in carbon capture, utilization and storage (CCUS) technology. Renew. Sustain. Energy Rev. 2024, 202, 114683. [Google Scholar] [CrossRef]
- Kheirinik, M.; Ahmed, S.; Rahmanian, N. Comparative Techno-Economic Analysis of Carbon Capture Processes: Pre-Combustion, Post-Combustion, and Oxy-Fuel Combustion Operations. Sustainability 2021, 13, 13567. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, H.; Xu, J.; Zhang, X. Advancements and challenges in chemical absorption technologies for shipborne carbon capture applications: Absorbent development, improvement of absorption towers, and system integration. J. Energy Chem. 2025, 106, 880–910. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; He, M.; Feng, D.; Du, Q.; Wu, S. Simulation Optimization of a New Ammonia-Based Carbon Capture Process Coupled with Low-Temperature Waste Heat Utilization. Energy Fuels 2017, 31, 4219–4225. [Google Scholar] [CrossRef]
- Aliyu, A.A.A.; Akram, M.; Hughes, K.J.; Ma, L.; Ingham, D.B.; Pourkashanian, M. Investigation into simulating Selective Exhaust Gas Recirculation and varying Pressurized Hot Water temperature on the performance of the Pilot-scale Advanced CO2 Capture Plant with 40 wt(%) MEA. Int. J. Greenh. Gas Control 2021, 107, 103287. [Google Scholar] [CrossRef]
- Ullah, A.; Soomro, M.I.; Kim, W.-S.; Saleem, M.W. The recovery of waste heat from the absorber vent gases of a CO2 capture unit by using membrane distillation technology for freshwater production. Int. J. Greenh. Gas Control 2020, 95, 102957. [Google Scholar] [CrossRef]
- Oko, E.; Ramshaw, C.; Wang, M. Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process. Appl. Energy 2018, 223, 302–316. [Google Scholar] [CrossRef]
- Pouladi, B.; Nabipoor Hassankiadeh, M.; Behroozshad, F. Dynamic simulation and optimization of an industrial-scale absorption tower for CO2 capturing from ethane gas. Energy Rep. 2016, 2, 54–61. [Google Scholar] [CrossRef]
- Wang, S.; Wang, N.; Jia, Z.; Zhang, Y.; Zhao, G.; Guan, H.; Li, Y.; He, S.; Zhang, L.; Gao, M. Thermal economy simulation study for a carbon capture power plant with combined heat and power based on absorption heat pump technology. Energy Convers. Manag. 2024, 300, 117958. [Google Scholar] [CrossRef]
- Cho, M.; Lee, S.; Choi, M.; Lee, J.W. Novel Spray Tower for CO2 Capture Using Uniform Spray of Monosized Absorbent Droplets. Ind. Eng. Chem. Res. 2018, 57, 3065–3075. [Google Scholar] [CrossRef]
- Siefert, N.S.; Agarwal, S.; Shi, F.; Shi, W.; Roth, E.A.; Hopkinson, D.; Kusuma, V.A.; Thompson, R.L.; Luebke, D.R.; Nulwala, H.B. Hydrophobic physical solvents for pre-combustion CO2 capture: Experiments, computational simulations, and techno-economic analysis. Int. J. Greenh. Gas Control 2016, 49, 364–371. [Google Scholar] [CrossRef]
- Theo, W.L.; Lim, J.S.; Hashim, H.; Mustaffa, A.A.; Ho, W.S. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl. Energy 2016, 183, 1633–1663. [Google Scholar] [CrossRef]
- Jiang, G.; Huang, Q.; Kenarsari, S.D.; Hu, X.; Russell, A.G.; Fan, M.; Shen, X. A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology. Appl. Energy 2015, 147, 214–223. [Google Scholar] [CrossRef]
- Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 2010, 30, 53–62. [Google Scholar] [CrossRef]
- Kunze, C.; Spliethoff, H. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants. Appl. Energy 2012, 94, 109–116. [Google Scholar] [CrossRef]
- Talei, S.; Szanyi, A.; Mizsey, P. Comparison of Water- and Amine-Based Carbon Capture Processes for Air and Oxyfuel Combustion Technologies. Ind. Eng. Chem. Res. 2024, 63, 16486–16496. [Google Scholar] [CrossRef]
- Feng, C.; Lin, T.; Zhu, R.; Wei, G.; Dong, K. Key technologies for CO2 capture and recycling after combustion: CO2 enrichment in oxygen enriched combustion of converter gas. J. Clean. Prod. 2022, 380, 135128. [Google Scholar] [CrossRef]
- Wu, F.; Argyle, M.D.; Dellenback, P.A.; Fan, M. Progress in O2 separation for oxy-fuel combustion–A promising way for cost-effective CO2 capture: A review. Prog. Energy Combust. Sci. 2018, 67, 188–205. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, P.; Yang, A.; Fennell, P. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture. J. Environ. Chem. Eng. 2015, 3, 2104–2114. [Google Scholar] [CrossRef]
- Wang, C.A.; Wang, P.; Zhao, L.; Du, Y.; Che, D. Experimental Study on NOx Reduction in Oxy-fuel Combustion Using Synthetic Coals with Pyridinic or Pyrrolic Nitrogen. Appl. Sci. 2018, 8, 2499. [Google Scholar] [CrossRef]
- Chaemwinyoo, U.; Marín, P.; Martín, C.F.; Díez, F.V.; Ordóñez, S. Assessment of an integrated adsorption-regenerative catalytic oxidation process for the harnessing of lean methane emissions. J. Environ. Chem. Eng. 2022, 10, 107013. [Google Scholar] [CrossRef]
- Sonar, S.; Giraudon, J.-M.; Kaliya Perumal Veerapandian, S.; Bitar, R.; Leus, K.; Van Der Voort, P.; Lamonier, J.-F.; Morent, R.; De Geyter, N.; Löfberg, A. Abatement of Toluene Using a Sequential Adsorption-Catalytic Oxidation Process: Comparative Study of Potential Adsorbent/Catalytic Materials. Catalysts 2020, 10, 761. [Google Scholar] [CrossRef]
- He, C.; Wang, H.; Fu, L.; Huo, J.; Zheng, Z.; Zhao, C.; An, M. Principles for designing CO2 adsorption catalyst: Serving thermal conductivity as the determinant for reactivity. Chin. Chem. Lett. 2022, 33, 990–994. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; He, H. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst. J. Environ. Sci. 2009, 21, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, B.; Kodera, T.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Thermal desorption processes of H2 and CH4 from Li2ZrO3 and Li4SiO4 materials absorbed H2O and CO2 in air at room temperature. Int. J. Hydrog. Energy 2023, 48, 8830–8836. [Google Scholar] [CrossRef]
- Zhao, Z.; Ni, M.; Li, X.; Buekens, A.; Yan, J. Suppression of PCDD/Fs during thermal desorption of PCBs-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 25335–25342. [Google Scholar] [CrossRef]
- Boulinguiez, B.; Le Cloirec, P. Chemical transformations of sulfur compounds adsorbed onto activated carbon materials during thermal desorption. Carbon 2010, 48, 1558–1569. [Google Scholar] [CrossRef]
- Musa, S.G.; Aljunid Merican, Z.M.; Haruna, A. Investigation of isotherms and isosteric heat of adsorption for PW11@HKUST-1 composite. J. Solid State Chem. 2022, 314, 123363. [Google Scholar] [CrossRef]
- Mehrvarz, E.; Ghoreyshi, A.A.; Jahanshahi, M. Adsorptive separation of CO2 and CH4 by the broom sorghum based activated carbon functionalized by diethanolamine. Korean J. Chem. Eng. 2017, 34, 413–424. [Google Scholar] [CrossRef]
- Fatima, S.S.; Borhan, A.; Ayoub, M.; Ghani, N.A. CO2 Adsorption Performance on Surface-Functionalized Activated Carbon Impregnated with Pyrrolidinium-Based Ionic Liquid. Processes 2022, 10, 2372. [Google Scholar] [CrossRef]
- Ren, F.; Liu, W. Review of CO2 Adsorption Materials and Utilization Technology. Catalysts 2023, 13, 1176. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y.; Wang, C.; Tang, C.; Yan, J.; Sundén, B.; Che, D. Design on CO2 capture based on adsorption-absorption integration and energy storage for energy supply buildings with fixed carbon emission. Int. J. Green Energy 2025, 22, 1197–1208. [Google Scholar] [CrossRef]
- Ning, H.; Li, Y.; Zhang, C. Recent Progress in the Integration of CO2 Capture and Utilization. Molecules 2023, 28, 4500. [Google Scholar] [CrossRef]
- Wang, R.; Wan, J.; Guo, H.; Tian, B.; Li, S.; Li, J.; Liu, S.; James, T.D.; Chen, Z. “All-in-one” carbon dots-based catalyst for converting CO2 to cyclic carbonates. Carbon 2023, 211, 118118. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, K.; Zheng, T.; An, L.; Xia, C.; Zhang, X. Integration of CO2 Capture and Electrochemical Conversion. ACS Energy Lett. 2023, 8, 2840–2857. [Google Scholar] [CrossRef]
- Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO2 to CO. Adv. Mater. 2023, 35, 2209814. [Google Scholar] [CrossRef] [PubMed]
- Nie, K.; Liu, Y.; Jiao, W. Integrated CO2 absorption-mineralization process by the MEA + MDEA system coupled with Ba(OH)2: Absorption kinetics and mechanisms. Chem. Eng. J. 2024, 502, 158102. [Google Scholar] [CrossRef]
- Sun, H.; Sun, S.; Liu, T.; Zeng, J.; Wang, Y.; Yan, Z.; Wu, C. Integrated CO2 Capture and Utilization: Selection, Matching, and Interactions between Adsorption and Catalytic Sites. ACS Catal. 2024, 14, 15572–15589. [Google Scholar] [CrossRef]
- Lopes, E.J.C.; Ribeiro, A.P.C.; Martins, L.M.D.R.S. New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts 2020, 10, 479. [Google Scholar] [CrossRef]
- Gao, Z.; Xiang, M.; He, M.; Zhou, W.; Chen, J.; Lu, J.; Wu, Z.; Su, Y. Transformation of CO2 with Glycerol to Glycerol Carbonate over ETS-10 Zeolite-Based Catalyst. Molecules 2023, 28, 2272. [Google Scholar] [CrossRef]
- Huh, S. Direct Catalytic Conversion of CO2 to Cyclic Organic Carbonates under Mild Reaction Conditions by Metal—Organic Frameworks. Catalysts 2019, 9, 34. [Google Scholar] [CrossRef]
- Supaokit, A.; Verma, V.; Wang, W.-C.; Chen, C.-L.; Wang, S.-M.; Nugroho, R.A.A.; Duong, V.D.; Hsu, H.-W. Turning CO2 into an alternative energy source: Study on methanation reaction optimization. Appl. Catal. A Gen. 2025, 691, 120073. [Google Scholar] [CrossRef]
- Wu, H.-Z.; Bandaru, S.; Liu, J.; Li, L.-L.; Jin, L. Mechanism of CO2 conversion into methanol and methane at the edge of graphitic carbon nitride sheet: A first-principle study. Carbon 2020, 169, 73–81. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Feng, X.; Wang, B.; Yang, L. Explosives in the Cage: Metal–Organic Frameworks for High-Energy Materials Sensing and Desensitization. Adv. Mater. 2017, 29, 1701898. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Gong, J.; Li, H.; Xiao, J.; Lv, B.; Wu, X.; Huang, Z.; Zhou, Z.; Jing, G. Modulating acidity in nickel-modified H-β zeolite catalyzes low-energy regeneration of CO2-captured amine solution. Sep. Purif. Technol. 2025, 361, 131046. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Gao, T.; Pan, S.; Liu, C.; Li, C.; Tao, X. Carbon-based Lewis acid-base and Brønsted acid sites for efficient catalytic CO2 fixation under mild conditions. Carbon 2025, 234, 120004. [Google Scholar] [CrossRef]
- Wang, L.; Han, Y.; Wei, J.; Ge, Q.; Lu, S.; Mao, Y.; Sun, J. Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins. Appl. Catal. B Environ. 2023, 328, 122506. [Google Scholar] [CrossRef]
- Gong, D.; Wu, Y.; Jiang, H.; Li, C.; Hu, Y. Confined Synthesis of Noble Metal Clusters Assisted by Liquid Film for Photocatalytic CO2 Reduction. Langmuir 2024, 40, 7492–7501. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Xie, S.; Zhang, H.; Wang, H.; Ma, X.; Gao, D.; Qi, J.; You, F. Lattice Distortion in a Confined Structured ZnS/ZnO Heterojunction for Efficient Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2023, 15, 36324–36333. [Google Scholar] [CrossRef]
- Lu, J.; Yang, L.; Zhang, Y.; Wang, C.; Zhang, C.; Zhao, X.S. Nanoconfinement Effects of Yolk–Shell Cu2O Catalyst for Improved C2+ Selectivity and Cu+ Stability in Electrocatalytic CO2 Reduction. ACS Appl. Nano Mater. 2023, 6, 20746–20756. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Gao, C.; Liu, G.; Cui, C.; Duoni; Hu, Q.; Hunaidy, A.S.; Moniee, M.A.; Dawsari, Y.A.; et al. Space confinement effect of carbon nanotube-alumina strip support on the Cu-Co catalysts for CO2 methanation. Catal. Today 2024, 437, 114781. [Google Scholar] [CrossRef]
- Zhong, B.; Hu, J.; Yang, X.; Shu, Y.; Cai, Y.; Li, C.M.; Qu, J. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives. Chin. J. Catal. 2025, 68, 177–203. [Google Scholar] [CrossRef]
- Li, J.; Li, W.-J.; Xu, S.-C.; Li, B.; Tang, Y.; Lin, Z.-F. Porous metal-organic framework with Lewis acid−base bifunctional sites for high efficient CO2 adsorption and catalytic conversion to cyclic carbonates. Inorg. Chem. Commun. 2019, 106, 70–75. [Google Scholar] [CrossRef]
- Shao, B.; Hu, G.; Alkebsi, K.A.M.; Ye, G.; Lin, X.; Du, W.; Hu, J.; Wang, M.; Liu, H.; Qian, F. Heterojunction-redox catalysts of FexCoyMg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing. Energy Environ. Sci. 2021, 14, 2291–2301. [Google Scholar] [CrossRef]
- Kanti Das, S.; Ghosh, A.; Bhattacharjee, S.; Chowdhury, A.; Mitra, P.; Bhaumik, A. A new 2D lanthanum based microporous MOF for efficient synthesis of cyclic carbonates through CO2 fixation. New J. Chem. 2021, 45, 9189–9196. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Li, T.; Zhao, N.; Zhao, W.; Hao, X.; Wang, J.; Wang, B.; Zhao, W. Equimolar CO2 adsorption by two Ni-based MOFs and their kinetic and thermodynamic studies. Sep. Purif. Technol. 2025, 355, 129696. [Google Scholar] [CrossRef]
- Liu, Y.; Song, L.; Tian, J.; Shang, S.; Chen, P.; Wu, J.; Ye, D. Structural responses of metal-organic frameworks to non-thermal plasma treatment and their effects on CO2 adsorption and conversion performances. J. Mater. Chem. A 2025, 13, 6573–6585. [Google Scholar] [CrossRef]
- Jin, R.; Li, R.; Ma, M.-L.; Chen, D.-Y.; Zhang, J.-Y.; Xie, Z.-H.; Ding, L.-F.; Xie, Y.; Li, J.-R. Beyond Tradition: A MOF-on-MOF Cascade Z-Scheme Heterostructure for Augmented CO2 Photoreduction. Small 2025, 2025, 2409759. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Chen, Z.; Gao, R.; Yu, H.; Yuan, T.; Liu, Z.; Maeder, M. Heterogeneous catalysts for the hydrogenation of amine/alkali hydroxide solvent captured CO2 to formate: A review. Greenh. Gases Sci. Technol. 2021, 11, 807–823. [Google Scholar] [CrossRef]
- Yong, C.; Lu, G.; Wang, X.; Shi, G.; Wang, Y.; Xie, X.; Sun, J. Alkali-Metal-Modified Al-PMOF for Enhanced CO2 Adsorption and Photocatalytic Reduction. ACS Appl. Eng. Mater. 2025, 3, 1513–1521. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Shang, J.; Wu, H.; Yan, F.; Tong, X.; Wang, L. Alkali metal doping strategy for improved CO/CO2 conversion in reversible solid oxide cells. J. Power Sources 2025, 630, 236142. [Google Scholar] [CrossRef]
- Cui, S.; Gu, Y.; Shao, Y.; Zhong, W. Experimental research of alkali metals modified Mg/DOBDC metal organic framework as high capacity CO2 adsorbent. Sep. Purif. Technol. 2024, 331, 125471. [Google Scholar] [CrossRef]
- Bian, K.; Guo, H.; Lai, Z.; Zhou, L.; Li, B.; Hao, J.; Zhang, H.; Peng, F.; Wang, M.; Xiong, L.; et al. Synergistic effect of carbon molecular sieve and alkali metal nitrate on promoting intermediate-temperature adsorption of CO2 over MgAl-layered double hydroxide. Sep. Purif. Technol. 2025, 358, 130263. [Google Scholar] [CrossRef]
- Liao, W.; Nguyen, A.; Liu, P. Alkali-induced catalytic tuning at metal and metal oxide interfaces. Chem. Soc. Rev. 2025, 54, 4164–4182. [Google Scholar] [CrossRef] [PubMed]
- Sundar, D.; Liu, C.-H.; Anandan, S.; Wu, J.J. Photocatalytic CO2 Conversion into Solar Fuels Using Carbon-Based Materials—A Review. Molecules 2023, 28, 5383. [Google Scholar] [CrossRef]
- Koshy, D.M.; Nathan, S.S.; Asundi, A.S.; Abdellah, A.M.; Dull, S.M.; Cullen, D.A.; Higgins, D.; Bao, Z.; Bent, S.F.; Jaramillo, T.F. Bridging Thermal Catalysis and Electrocatalysis: Catalyzing CO2 Conversion with Carbon-Based Materials. Angew. Chem. Int. Ed. 2021, 60, 17472–17480. [Google Scholar] [CrossRef]
- Hong, J.; Jeon, Y.E.; Park, J.; Kim, Y.E.; Ko, Y.N. Synergistic effect of hybrid support with carbon nitride and carbon black on Ag catalyst for efficient CO2 reduction to CO. Appl. Surf. Sci. 2025, 696, 162892. [Google Scholar] [CrossRef]
- Ma, S.; Wu, K.; Fan, S.; Li, Y.; Xie, Q.; Ma, J.; Yang, L. Electrocatalytic CO2 reduction enhanced by Sb doping in MOF-derived carbon-supported Bi-based materials. Sep. Purif. Technol. 2024, 339, 126520. [Google Scholar] [CrossRef]
- Ono, Y.; Tokuda, M.; Sasayama, T.; Kosaka, F.; Matsuda, S.; Kuramoto, K. Application of moving-bed reactor for effective hydrogenation of CO2 captured with a dual-function material to enhance the concentration of the gaseous product of methane. Chem. Eng. J. 2025, 505, 159585. [Google Scholar] [CrossRef]
- Criado, Y.A.; García, R.; Abanades, J.C. Demonstration of CO2 capture with CaO and Ca(OH)2 in a countercurrent moving bed carbonator pilot. Chem. Eng. J. 2024, 494, 152945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, R. Integrated Technology of CO2 Adsorption and Catalysis. Catalysts 2025, 15, 745. https://doi.org/10.3390/catal15080745
Li M, Wang R. Integrated Technology of CO2 Adsorption and Catalysis. Catalysts. 2025; 15(8):745. https://doi.org/10.3390/catal15080745
Chicago/Turabian StyleLi, Mengzhao, and Rui Wang. 2025. "Integrated Technology of CO2 Adsorption and Catalysis" Catalysts 15, no. 8: 745. https://doi.org/10.3390/catal15080745
APA StyleLi, M., & Wang, R. (2025). Integrated Technology of CO2 Adsorption and Catalysis. Catalysts, 15(8), 745. https://doi.org/10.3390/catal15080745