Recent Advances in Energy-Related Materials—Special Issue Preface
Author Contributions
Acknowledgments
Conflicts of Interest
List of Contributions
- Swadchaipong, N.; Tongnan, V.; Makdee, A.; Hartley, U.W.; Sereewatthanawut, I. Catalytic Performance of Waste-Based Metal Oxides Towards Waste-Based Combustion Process. Catalysts 2025, 15, 153. https://doi.org/10.3390/catal15020153.
- Amber, H.; Balčiūnaitė, A.; Sukackienė, Z.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Electrolessly Deposited Cobalt–Phosphorus Coatings for Efficient Hydrogen and Oxygen Evolution Reactions. Catalysts 2025, 15, 8. https://doi.org/10.3390/catal15010008.
- Peera, S.G.; Koutavarapu, R.; Prasada Reddy, P.S.; Koyyada, G.; Alodhayb, A.N.; Pandiaraj, S.; Kim, S.W.; Tamtam, M.R. Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst. Catalysts 2024, 14, 792. https://doi.org/10.3390/catal14110792.
- Ashmath, S.; Wu, H.; Peera, S.G.; Lee, T.-G. Metal–Organic Framework-Derived Rare Earth Metal (Ce-N-C)-Based Catalyst for Oxygen Reduction Reactions in Dual-Chamber Microbial Fuel Cells. Catalysts 2024, 14, 506. https://doi.org/10.3390/catal14080506.
- Alamro, F.S.; Medany, S.S.; Al-Kadhi, N.S.; Mostafa, A.M.; Zaher, W.F.; Ahmed, H.A.; Hefnawy, M.A. Controllable Synthesis of Fe2O3/Nickel Cobaltite Electrocatalyst to Enhance Oxidation of Small Molecules. Catalysts 2024, 14, 329. https://doi.org/10.3390/catal14050329.
- Araújo, H.F.; Gómez, J.A.; Santos, D.M.F. Proton-Exchange Membrane Electrolysis for Green Hydrogen Production: Fundamentals, Cost Breakdown, and Strategies to Minimize Platinum-Group Metal Content in Hydrogen Evolution Reaction Electrocatalysts. Catalysts 2024, 14, 845. https://doi.org/10.3390/catal14120845.
- Zhang, Y.; Zhang, Y.; Li, Z.; Yu, E.; Ye, H.; Li, Z.; Guo, X.; Zhou, D.; Wang, C.; Sha, Q.; et al. A Review of Hydrogen Production via Seawater Electrolysis: Current Status and Challenges. Catalysts 2024, 14, 691. https://doi.org/10.3390/catal14100691.
References
- Available online: https://www.iea.org/energy-system/low-emission-fuels/hydrogen (accessed on 30 June 2025).
- Lu, G.; Liu, B.; Long, L.; Qian, Y.; Zeng, X.; Hao, S.; Cai, W.; Xiao, J. A high-performance direct biomass fuel cell utilizing red bean shell as fuel. Fuel 2026, 403, 136083. [Google Scholar] [CrossRef]
- Lei, Y.; Fang, J.; Xu, Y.; Wang, X.; Xia, C.; Wang, B.; Dong, W. Low-temperature direct ethanol solid oxide fuel cells based on LiNi0.8Co0.15Al0.05O2-δ electrodes. Int. J. Hydrogen Energy 2025, 130, 242. [Google Scholar] [CrossRef]
- Yang, Z.; Li, K.; Zhang, D.; Yang, H. The synergistic effect of hard magnetic Co2C and soft magnetic CoFe improves electrocatalytic overall water splitting performance. J. Alloys Compd. 2025, 1036, 181593. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, X.; Meng, X. Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 9087. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Li, H.; Liu, J.; Wu, Y.; Toan, S.; Sun, Z. The critical role of Ga doped Cu/Al2O3 aerogels in carbon monoxide suppression during steam reforming of methanol. Fuel Process. Technol. 2023, 249, 107792. [Google Scholar] [CrossRef]
- Lv, X.; Xu, X.; Yu, M.; Wei, Y.; Wang, J.; Wang, J.-z. The synthesis of electrospun N-doped carbon nanofibers with embedded Fe2N/Fe3C species for catalyzing the O2 and CO2 reduction reactions. New Carbon Mater. 2025, 40, 333. [Google Scholar] [CrossRef]
- Greeley, J.; Mavrikakis, M. Near-surface alloys for hydrogen fuel cell applications. Catal. Today 2006, 111, 52. [Google Scholar] [CrossRef]
- Reddy, G.V.; Sekhar, Y.C.; Raghavendra, P.; Reddy, M.N.; Chandana, P.S.; Sarma, L.S. Controlled synthesis of reduced graphene oxide-supported bimetallic Pt–Au nanoparticles for enhanced electrooxidation of methanol. Solid State Sci. 2024, 149, 107469. [Google Scholar] [CrossRef]
- Kim, S.; Jo, Y.; Lee, M.; Saito, N.; Kim, J.; Lee, S. The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochim. Acta 2017, 233, 123. [Google Scholar] [CrossRef]
- Gamboa-Rosales, N.K.; Ayastuy, J.L.; Gutierrez-Ortiz, M.A. Effect of Au in Au- Co3O4/CeO2 catalyst during oxygen-enhanced water gas shift. Int. J. Hydrogen Energy 2016, 41, 19408. [Google Scholar] [CrossRef]
- Suja, P.; John, J.; Rajan, T.P.D.; Anilkumar, G.M.; Yamaguchi, T.; Pillai, S.C.; Hareesh, U.S. Graphitic carbon nitride (g-C3N4) based heterogeneous single atom catalysts: Synthesis, characterisation and catalytic applications. J. Mater.Chem. A 2023, 11, 8599. [Google Scholar] [CrossRef]
- Hayashida, K.; Lu, B.; Takakusagi, S.; Nakamura, J.; Takeyasu, K. Design Principles of Nitrogen-Doped Carbon Catalysts for Oxygen Reduction Reaction. ChemElectroChem 2025, 12, e202500089. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Guo, S. Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem 2021, 3, 100053. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, H.; Qu, Y.; Wang, Y. Self-supporting Co-MoOx@N-doped carbon/expanded graphite paper for efficient water splitting catalyst. Diam. Relat. Mater. 2023, 140, 110501. [Google Scholar] [CrossRef]
- Shan, K.; Zhao, Y.; Zhang, B.; Zhang, A.; Xiao, W.; Wei, S.; Lin, J.; Pang, H. Ni foam-based catalysts for hydrogen evolution: From laboratory research to industrial applications. Chem. Eng. J. 2025, 518, 164801. [Google Scholar] [CrossRef]
- He, X.; Chen, X.; Hu, Z.; Li, Y.; Du, J.; Wu, L. Electrodeposition of Co-Ni-W ternary alloy electrode materials from ethylene glycol electrolyte and their catalytic performance for hydrogen evolution reaction. Electrochim. Acta 2025, 535, 146614. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, H.; Shi, P.; Qiu, J.; Lei, X.; Wang, B.; Guo, R.; Liu, X. The role of thermal in oxygen evolution reaction. J. Alloys Compd. 2024, 1002, 175218. [Google Scholar] [CrossRef]
- Ashizawa, D.; Itatani, M.; Fukushima, T.; Murakoshi, K. Enhanced Electrochemical Oxygen Evolution Reaction Enabled by Ni Cavity-Arrayed Electrodes. ChemRxiv 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L. Recent Advances in Energy-Related Materials—Special Issue Preface. Catalysts 2025, 15, 684. https://doi.org/10.3390/catal15070684
Kepenienė V, Tamašauskaitė-Tamašiūnaitė L. Recent Advances in Energy-Related Materials—Special Issue Preface. Catalysts. 2025; 15(7):684. https://doi.org/10.3390/catal15070684
Chicago/Turabian StyleKepenienė, Virginija, and Loreta Tamašauskaitė-Tamašiūnaitė. 2025. "Recent Advances in Energy-Related Materials—Special Issue Preface" Catalysts 15, no. 7: 684. https://doi.org/10.3390/catal15070684
APA StyleKepenienė, V., & Tamašauskaitė-Tamašiūnaitė, L. (2025). Recent Advances in Energy-Related Materials—Special Issue Preface. Catalysts, 15(7), 684. https://doi.org/10.3390/catal15070684