Hollow Porous Organic Nanosphere-Supported ZnO Composites for Photodegradation of Crystal Violet
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Synthesis and Characterization
2.2. Photocatalytic Degradation of Dyes
3. Methods and Experiments
3.1. Materials
3.2. Characterization
3.3. Catalyst Synthesis
3.3.1. Synthesis of Hollow Porous Organic Nanospheres (HPONs)
3.3.2. Preparation of Hollow Porous Organic Nanosphere-Supported ZnO Composites (HPON@ZnO)
3.4. Photodegradation Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Routoula, E.; Patwardhan, S.V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environ. Sci. Technol. 2020, 54, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Naseem, S.; Rawal, R.S.; Pandey, D.; Suman, S.K. Immobilized Laccase: An Effective Biocatalyst for Industrial Dye Degradation from Wastewater. Environ. Sci. Pollut. Res. 2023, 30, 84898–84917. [Google Scholar] [CrossRef] [PubMed]
- El-Gaayda, J.; Titchou, F.E.; Oukhrib, R.; Yap, P.-S.; Liu, T.; Hamdani, M.; Ait Akbour, R. Natural Flocculants for the Treatment of Wastewaters Containing Dyes or Heavy Metals: A State-of-the-Art Review. J. Environ. Chem. Eng. 2021, 9, 106060. [Google Scholar] [CrossRef]
- Shaida, M.A.; Sen, A.K.; Dutta, R.K. Alternate Use of Sulphur Rich Coals as Solar Photo-Fenton Agent for Degradation of Toxic Azo Dyes. J. Clean. Prod. 2018, 195, 1003–1014. [Google Scholar] [CrossRef]
- Ertugay, N.; Acar, F.N. Removal of COD and Color from Direct Blue 71 Azo Dye Wastewater by Fenton’s Oxidation: Kinetic Study. Arab. J. Chem. 2017, 10, S1158–S1163. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, C.; Hou, B.; Wang, Y.; Hao, C.; Wu, J. Carbon Composite Lignin-Based Adsorbents for the Adsorption of Dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef]
- Sellaoui, L.; Bouzidi, M.; Franco, D.S.P.; Alshammari, A.S.; Gandouzi, M.; Georgin, J.; Mohamed, N.B.H.; Erto, A.; Badawi, M. Exploitation of Bauhinia Forficata Residual Fruit Powder for the Adsorption of Cationic Dyes. Chem. Eng. J. 2023, 456, 141033. [Google Scholar] [CrossRef]
- Alsaffar, M.A.; Rahman, M.A.; Mageed, A.K.; Ali, S.A.K.; Lutfee, T.; Adnan, S.W.; Shakir, H.A.A. Electrochemical Removal of Dye from a Tanning Process Industrial Wastewater. Chem. Pap. 2023, 77, 6311–6318. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong Vibration-Catalysis of ZnO Nanorods for Dye Wastewater Decolorization via Piezo-Electro-Chemical Coupling. Chemosphere 2018, 193, 1143–1148. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, X.; Zhang, J.; Wang, H.; Jiang, L.; Zeng, G. Photocatalytic Decontamination of Wastewater Containing Organic Dyes by Metal-Organic Frameworks and Their Derivatives. ChemCatChem 2017, 9, 41–64. [Google Scholar] [CrossRef]
- Malini, B.; Allen Gnana Raj, G. C,N and S-Doped TiO2-Characterization and Photocatalytic Performance for Rose Bengal Dye Degradation under Day Light. J. Environ. Chem. Eng. 2018, 6, 5763–5770. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical Photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Hasanah, A.U.; Gareso, P.L.; Rauf, N.; Tahir, D. Photocatalytic Performance of Zinc Oxide and Metal-Doped Zinc Oxide for Various Organic Pollutants. ChemBioEng Rev. 2023, 10, 698–710. [Google Scholar] [CrossRef]
- Guzmán-Carrillo, H.R.; Manzano-Ramírez, A.; Garcia Lodeiro, I.; Fernández-Jiménez, A. ZnO Nanoparticles for Photocatalytic Application in Alkali-Activated Materials. Molecules 2020, 25, 5519. [Google Scholar] [CrossRef]
- Shundo, Y.; Tam Nguyen, T.; Akrami, S.; Edalati, P.; Itagoe, Y.; Ishihara, T.; Arita, M.; Guo, Q.; Fuji, M.; Edalati, K. Oxygen Vacancy-Rich High-Pressure Rocksalt Phase of Zinc Oxide for Enhanced Photocatalytic Hydrogen Evolution. J. Colloid. Interfaces Sci. 2024, 666, 22–34. [Google Scholar] [CrossRef]
- Guzmán, H.; Salomone, F.; Bensaid, S.; Castellino, M.; Russo, N.; Hernández, S. CO2 Conversion to Alcohols over Cu/ZnO Catalysts: Prospective Synergies between Electrocatalytic and Thermocatalytic Routes. ACS Appl. Mater. Interfaces 2022, 14, 517–530. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.Z.; Liu, H.H.; Zhao, C.F.; Zhao, X.J.; Xie, H. Intensitive UV-Vis-IR Driven Catalytic Activity of Pt Supported on Hierarchical ZnO Porous Nanosheets for Benzene Degradation via Novel Photothermocatalytic Synergetic Effect. J. Environ. Chem. Eng. 2022, 10, 107694. [Google Scholar] [CrossRef]
- Aroui, L.; Madani, S.; Bousnoubra, I.; Boublia, A.; Lakikza, I.; Aouni, S.I.; Abdelouahed, L.; Ernst, B.; Alam, M.; Benguerba, Y. Enhanced Degradation of Crystal Violet Using PANI-ZnO Nanocomposites: Electro-Oxidation and Photocatalysis Studies. J. Mol. Liq. 2024, 412, 125818. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zheng, S.; Xue, H.; Pang, H. N-Doped Mesoporous ZnO with Oxygen Vacancies for Stable Hydrazine Electrocatalysis. ChemNanoMat 2019, 5, 79–84. [Google Scholar] [CrossRef]
- Kelly, S.R.; Shi, X.; Back, S.; Vallez, L.; Park, S.Y.; Siahrostami, S.; Zheng, X.; Nørskov, J.K. ZnO as an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catal. 2019, 9, 4593–4599. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Choe, Y.-E.; Shin, S.-J.; Park, J.-H.; Dashnyam, K.; Kim, H.S.; Jun, S.-K.; Knowles, J.-C.; Kim, H.-W.; Lee, J.-H.; et al. Photocatalytic Effect-Assisted Antimicrobial Activities of Acrylic Resin Incorporating Zinc Oxide Nanoflakes. Biomater. Adv. 2022, 139, 213025. [Google Scholar]
- Dobrucka, R.; Długaszewska, J. Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium Pratense Flower Extract. Saudi J. Biol. Sci. 2016, 23, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Anitha, R.; Ramesh, K.V.; Ravishankar, T.N.; Sudheer Kumar, K.H.; Ramakrishnappa, T. Cytotoxicity, Antibacterial and Antifungal Activities of ZnO Nanoparticles Prepared by the Artocarpus Gomezianus Fruit Mediated Facile Green Combustion Method. J. Sci. -Adv. Mater. Dev. 2018, 3, 440–451. [Google Scholar] [CrossRef]
- Suresh, D.; Nethravathi, P.C.; Udayabhanu; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Green Synthesis of Multifunctional Zinc Oxide (ZnO) Nanoparticles Using Cassia Fistula Plant Extract and Their Photodegradative, Antioxidant and Antibacterial Activities. Mat. Sci. Semicon. Proc. 2015, 31, 446–454. [Google Scholar] [CrossRef]
- Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. In Vitro Antioxidant and Antidiabetic Activities of Zinc Oxide Nanoparticles Synthesized Using Different Plant Extracts. Bioprocess Biosyst. Eng. 2017, 40, 943–957. [Google Scholar] [CrossRef]
- Hafez, A.; Nassef, E.; Fahmy, M.; Elsabagh, M.; Bakr, A.; Hegazi, E. Impact of Dietary Nano-Zinc Oxide on Immune Response and Antioxidant Defense of Broiler Chickens. Environ. Sci. Pollut. Res. 2020, 27, 19108–19114. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Photocatalytic Oxidation of Methane over Silver Decorated Zinc Oxide Nanocatalysts. Nat. Commun. 2016, 7, 12273. [Google Scholar] [CrossRef]
- Bae, K.-L.; Kim, J.; Lim, C.K.; Nam, K.M.; Song, H. Colloidal Zinc Oxide–Copper(I) Oxide Nanocatalysts for Selective Aqueous Photocatalytic Carbon Dioxide Conversion into Methane. Nat. Commun. 2017, 8, 1156. [Google Scholar] [CrossRef]
- Ali Ansari, S.; Parveen, N.; Aljaafari, A.; Alshoaibi, A.; Alsulaim, G.M.; Waqas Alam, M.; Zahid Ansari, M. Novel Furfural-Complexed Approach to Synthesizing Carbon-Doped ZnO with Breakthrough Photocatalytic Efficacy. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Tkachenko, D.; Zheltova, V.; Meshina, K.; Vorontsov-Velyaminov, P.; Emelianova, M.; Bobrysheva, N.; Osmolowsky, M.; Voznesenskiy, M.; Osmolovskaya, O. Fe3O4@ZnO Core-Shell Nanoparticles-a Novel Facile Fabricated Magnetically Separable Photocatalyst. Appl. Surf. Sci. 2024, 672, 160873. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Fallah, A.; Jamshidi, M. A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2-Based Photocatalysts for Photodegradation of Contaminants. ACS Omega 2024, 9, 25457–25492. [Google Scholar] [CrossRef] [PubMed]
- Bayram, Ü.; Özer, Ç.; Yilmaz, E. Comparison of Photocatalytic and Adsorption Properties of ZnS@ZnO, CdS@ZnO, and PbS@ZnO Nanocomposites to Select the Best Material for the Bifunctional Removal of Methylene Blue. ACS Omega 2025, 10, 9986–10003. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, Q.Y.; EI-Din, M.G.; Zhang X., H. Immobilization of Photocatalytic ZnO Nanocaps on Planar and Curved Surfaces for the Photodegradation of Organic Contaminants in Water. ACS ES&T Water 2023, 3, 2740–2752. [Google Scholar]
- Dehghani, M.; Nadeem, H.; Raghuwanshi, V.S.; Mahdavi, H.; Holl, M.M.B.; Batchelor, W. ZnO/Cellulose Nanofiber Composites for Sustainable Sunlight-Driven Dye Degradation. ACS Appl. Nano Mater. 2020, 3, 10284–10295. [Google Scholar] [CrossRef]
- Hussain M., Z.; Schneemann, A.; Fischer, R.A.; Zhu Y., Q.; Xia Y., D. MOF Derived Porous ZnO/C Nanocomposites for Efficient Dye Photodegradation. ACS Appl. Energy Mater. 2018, 1, 4695–4707. [Google Scholar] [CrossRef]
- He, Z.D.; Zhou, M.H.; Wang, T.Q.; Xu, Y.; Yu, W.; Shi, B.Y.; Huang, K. Hyper-Cross-Linking Mediated Self-Assembly Strategy to Synthesize Hollow Microporous Organic Nanospheres. ACS Appl. Mater. Interfaces 2017, 9, 35209–35217. [Google Scholar] [CrossRef]
- Aier, I.; Purkayastha, D.D. Hierarchical 0D CuO Wrapped by Petal-like 2D ZnO: A Strategic Approach of Superhydrophobic Melamine Sponge toward Wastewater Treatment. Langmuir 2024, 40, 9702–9716. [Google Scholar] [CrossRef]
- Phogat, P.; Shreya; Jha, R.; Singh, S. Synthesis of Novel ZnO nanoparticles with Optimized Band Gap of 1.4 eV for High-sensitivity Photo Electrochemical Detection. Mater. Today Sustain. 2024, 27, 100823. [Google Scholar] [CrossRef]
- Maciel, A.V.M.; Job, A.Z.; Mussel, W.N.; Brito, W.; Pasa, V.M.D. Bio-hydrogen Production Based on Catalytic Reforming of Volatiles Generated by Cellulose Pyrolysis: An Integrated Process for ZnO Reduction and Zinc Nanostructures Fabrication. Biomass Bioenergy 2011, 35, 1121–1129. [Google Scholar] [CrossRef]
- Karthik, P.; Ravichandran, S.; Mukkannan, A.; Rajesh, J. Plant-Mediated Biosynthesis of Zinc Oxide Nanoparticles from Delonix Elata: A Promising Photocatalyst for Crystal Violet Degradation. Inorg. Chem. Commun. 2022, 146, 110122. [Google Scholar] [CrossRef]
- Gokhale, T.A.; Sarda, T.J.; Bhanage, B.M. Sunlight Driven Rapid and Efficient Photodegradation of Crystal Violet Using Magnesium Doped Zinc Oxide Nanostructures. Mater. Chem. Phys. 2023, 295, 127075. [Google Scholar] [CrossRef]
- Munir, S.; Farooq Warsi, M.; Zulfiqar, S.; Ayman, I.; Haider, S.; Alsafari, I.A.; Agboola, P.O.; Shakir, I. Nickel Ferrite/Zinc Oxide Nanocomposite: Investigating the Photocatalytic and Antibacterial Properties. J. Saudi Chem. Soc. 2021, 25, 101388. [Google Scholar] [CrossRef]
- Abarna, B.; Preethi, T.; Rajarajeswari, G.R. Lemon Peel Guided Sol-Gel Synthesis of Visible Light Active Nano Zinc Oxide. J. Environ. Chem. Eng. 2019, 7, 102742. [Google Scholar] [CrossRef]
- Shen, H.; Qin, L.; Gao, X.; Wang, Q.; Zhang, T.; Kang, S.Z.; Li, X. A Novel Core-Shell Heterostructure of Zinc Oxide/Metal-Organic Frameworks Anchored Silver Nanoparticles for Enhanced SERS and Photocatalytic Performance. J. Environ. Chem. Eng. 2023, 11, 111526. [Google Scholar] [CrossRef]
- Rostamzadeh, D.; Sadeghi, S. Ni Doped Zinc Oxide Nanoparticles Supported Bentonite Clay for Photocatalytic Degradation of Anionic and Cationic Synthetic Dyes in Water Treatment. J. Photoch. Photo. A -Chem. 2022, 431, 113947. [Google Scholar] [CrossRef]
- Kanagamani, K.; Muthukrishnan, P.; Saravanakumar, K.; Shankar, K.; Kathiresan, A. Photocatalytic Degradation of Environmental Perilous Gentian Violet Dye Using Leucaena-Mediated Zinc Oxide Nanoparticle and Its Anticancer Activity. Rare Met. 2019, 38, 277–286. [Google Scholar] [CrossRef]
Catalyst | Concentration/ppm | Catalyst Concentration (mg/mL) | Light | Time | Ref. |
---|---|---|---|---|---|
Delonix Elata extract/ZnO | 8.16 | 1 | 500 W, Xe lamp | 90 min, 86% | [40] |
5%Mg-ZnO | 10 | 0.8 | sunlight | 20 min, 98.75% | [41] |
NiFe2O4/ZnO | 10 | 0.8 | sunlight | 40 min, 41.3% | [42] |
ZLP-3 | 20.40 | 2 | Heber single lamp | 150 min, 100% | [43] |
Al/ZnO/ZIF-M/Ag | 4.08 | 1 | 500 W, mercury lamp | 105 min, 97.1% | [44] |
B/NZP | 10 | 10 | 125 W, 365 nm | 240 min, 98% | [45] |
ZnO-NPs | 10 | 0.66 | UV | 90 min, 100% | [46] |
HPON@ZnO-1M | 50 | 1 | 40 W, 365 nm | 30 min, 99% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Zhang, W.; Pan, M.; Zhang, H.; Huang, K. Hollow Porous Organic Nanosphere-Supported ZnO Composites for Photodegradation of Crystal Violet. Catalysts 2025, 15, 529. https://doi.org/10.3390/catal15060529
Luo Y, Zhang W, Pan M, Zhang H, Huang K. Hollow Porous Organic Nanosphere-Supported ZnO Composites for Photodegradation of Crystal Violet. Catalysts. 2025; 15(6):529. https://doi.org/10.3390/catal15060529
Chicago/Turabian StyleLuo, Yiqian, Wanqi Zhang, Maoling Pan, Hui Zhang, and Kun Huang. 2025. "Hollow Porous Organic Nanosphere-Supported ZnO Composites for Photodegradation of Crystal Violet" Catalysts 15, no. 6: 529. https://doi.org/10.3390/catal15060529
APA StyleLuo, Y., Zhang, W., Pan, M., Zhang, H., & Huang, K. (2025). Hollow Porous Organic Nanosphere-Supported ZnO Composites for Photodegradation of Crystal Violet. Catalysts, 15(6), 529. https://doi.org/10.3390/catal15060529