Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions
Abstract
:1. Introduction
2. Results
2.1. Synthesis Strategy and Characterization of Ru@N-CS Catalyst
2.2. Catalytic Performance of Phenol Hydrogenation into Cyclohexanol over Ru@N-CS Catalyst
2.3. Density Functional Theory (DFT) Calculation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Mesoporous Hollow Carbon Spheres
3.3. Synthesis of Mesoporous Hollow Ru@N-CS Catalyst
3.4. Synthesis of Ru/N-CS Catalyst
3.5. Characterization Method of Catalysts
3.6. Catalytic Hydrogenation Measurements of Phenol into Cyclohexanol
3.7. Calculation on Reaction Rate Constant (k) and Activation Energy (Ea)
3.8. DFT Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corma, A.S.; Iborra, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Yin, L.; Shao, S.; Li, G. Recent progress on selective hydrogenation of phenol toward cyclohexanone or cyclohexanol. Nanotechnology 2021, 33, 072003. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Surkus, A.E.; Junge, K.; Topf, C.; Radnik, J.; Kreyenschulte, C.; Beller, M. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix. Nat. Commun. 2016, 7, 11326. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, W.; Rehman, M.; Liu, W.; Xu, Y.; Huang, H.; Wang, S.; Zhao, Y.; Mei, D.; Ma, X. Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catal. 2022, 12, 4724–4736. [Google Scholar] [CrossRef]
- Barta, K.; Ford, P.C. Catalytic Conversion of Nonfood Woody Biomass Solids to Organic Liquids. Acc. Chem. Res. 2014, 47, 1503–1512. [Google Scholar] [CrossRef]
- Long, J.; Shu, S.; Wu, Q.; Yuan, Z.; Wang, T.; Xu, Y.; Zhang, X.; Zhang, Q.; Ma, L. Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalyzed by Ni/MgO. Energy Convers. Manag. 2015, 105, 570–577. [Google Scholar] [CrossRef]
- Song, Z.; Ren, D.; Wang, T.; Jin, F.; Jiang, Q.; Huo, Z. Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder. Catal. Today 2016, 274, 94–98. [Google Scholar] [CrossRef]
- Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B.C.; Rahimpour, M. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129. [Google Scholar] [CrossRef]
- Mondelli, C.; Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764–3782. [Google Scholar] [CrossRef]
- Davda, R.R.; Shabaker, J.W.; Huber, G.W.; Cortright, R.D.; Dumesic, J.A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B Environ. 2005, 56, 171–186. [Google Scholar] [CrossRef]
- Zhan, J.; Hu, R.; Luo, X.; Zhang, C.; Luo, G.; Fan, J.; Clark, J.; Zhang, S. Highly selective conversion of phenol to cyclohexanol over Ru/Nb2O5-nC18PA catalysts with increased acidity in a biphasic system under mild conditions. Green Chem. 2022, 24, 1152–1164. [Google Scholar] [CrossRef]
- Karakhanov, E.; Maximov, A.; Zolotukhina, A.; Mamadli, A. Dendrimer-Stabilized Ru Nanoparticles Immobilized in Organo-Silica Materials for Hydrogenation of Phenols. Catalysts 2017, 7, 86. [Google Scholar] [CrossRef]
- Peng, L.; Peng, H.; Hung, C.-T.; Guo, D.; Duan, L.; Ma, B.; Liu, L.; Li, W.; Zhao, D. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem 2021, 7, 1020–1032. [Google Scholar] [CrossRef]
- Tian, H.; Liang, J.; Liu, J. Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. Adv. Mater. 2019, 31, 1903886. [Google Scholar] [CrossRef]
- Liu, J.; Yang, T.; Wang, D.-W.; Lu, G.; Zhao, D.; Qiao, S. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M.O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. Engl. 2015, 54, 588–593. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, S.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 2011, 50, 5947–5951. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, T.; Yang, C.; Ma, C.; Zhao, Z.; Wu, Z.; Cao, S.; Geng, W.; Wang, Y.; Yao, Y. Activity Trends and Mechanisms in Peroxymonosulfate-Assisted Catalytic Production of Singlet Oxygen over Atomic Metal-N-C Catalysts. Angew. Chem. Int. Ed. 2021, 60, 22513–22521. [Google Scholar] [CrossRef]
- Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221. [Google Scholar] [CrossRef]
- Yu, Z.; Ji, N.; Xiong, J.; Li, X.; Zhang, R.; Zhang, L.; Lu, X. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Angew. Chem. Int. Ed. Engl. 2021, 60, 20786–20794. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, L.; Han, W.; Tang, M.; Zhou, L.; Zhang, Y.; Li, X.; Qin, Z.; Yang, H. One-step fabrication of Ni-embedded hierarchically-porous carbon microspheres for levulinic acid hydrogenation. Chem. Eng. J. 2019, 369, 386–393. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, Y.; Xu, C.; Liu, S.; Chen, C.; Peng, Q.; Zhuang, Z.; Xiao, H.; Pan, Y.; Lu, S. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875. [Google Scholar] [CrossRef]
- Li, A.; Shen, K.; Chen, J.; Li, Z.; Li, Y. Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts. Chem. Eng. Sci. 2017, 166, 66–76. [Google Scholar] [CrossRef]
- Vinokurov, V.; Glotov, A.; Chudakov, Y.; Stavitskaya, V.; Ivanov, E.; Gushchin, P.; Zolotukhina, A.; Maximov, A.; Karakhanov, E.; Lvov, Y. Core/Shell Ruthenium–Halloysite Nanocatalysts for Hydrogenation of Phenol. Ind. Eng. Chem. Res. 2017, 56, 14043–14052. [Google Scholar] [CrossRef]
- Singh, N.; Lee, M.; Akhade, S.A.; Cheng, G.; Camaioni, D.M.; Gutierrez, O.Y.; Glezakou, V.A.; Rousseau, R.; Lercher, J.A.; Campbell, C.T. Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh. ACS Catal. 2018, 9, 1120–1128. [Google Scholar] [CrossRef]
- Su, H.; Zhang, K.; Zhang, B.; Wang, H.; Yu, Q.; Li, X. Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. J. Am. Chem. Soc. 2017, 139, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, M.; Wang, Y.; Fu, J.; Lu, X.; Hou, Z. Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles. J. Mater. Chem. A 2016, 4, 5842–5848. [Google Scholar] [CrossRef]
- Guo, H.; Gao, R.; Sun, M.; Guo, H.; Wang, B.; Chen, L. Cobalt Entrapped in N,S-Codoped Porous Carbon: Catalysts for Transfer Hydrogenation with Formic Acid. ChemSusChem 2019, 12, 487–494. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, X.; Wang, S.; Cheng, A.; Zhang, Y. Advanced Carbon-Based Nanocatalysts and their Application in Catalytic Conversion of Renewable Platform Molecules. ChemSusChem 2022, 15, 202200411. [Google Scholar] [CrossRef]
- Qian, W.; Lin, L.; Qiao, Y.; Zhao, X.; Xu, Z.; Gong, H.; Li, D.; Chen, M.; Huang, R.; Hou, Z. Ru subnanoparticles on N-doped carbon layer coated SBA-15 as efficient Catalysts for arene hydrogenation. Appl. Catal. A Gen. 2019, 585, 117183. [Google Scholar] [CrossRef]
- Zhao, C.; Kasakov, S.; He, J.; Lercher, J.A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J. Catal. 2012, 296, 12–23. [Google Scholar] [CrossRef]
- Resende, K.A.; Hori, C.E.; Noronha, F.B.; Shi, H.; Gutierrez, O.Y.; Camaioni, D.M.; Lercher, J.A. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO2. Appl. Catal. A Gen. 2017, 548, 128–135. [Google Scholar] [CrossRef]
- He, L.; Niu, Z.; Miao, R.; Chen, Q.; Guan, Q.; Ning, P. Selective hydrogenation of phenol by the porous Carbon/ZrO2 supported Ni Co nanoparticles in subcritical water medium. J. Clean. Prod. 2019, 215, 375–381. [Google Scholar] [CrossRef]
- Liu, Z.; Hamad, I.; Li, Y.; Chen, Y.; Wang, S.; Jentoft, R.; Jentoft, F.C. Poisoning and competitive adsorption effects during phenol hydrogenation on platinum in water-alcohol mixtures. Appl. Catal. A Gen. 2019, 585, 117199. [Google Scholar] [CrossRef]
- Liu, D.; Li, G.; Yang, F.; Wang, H.; Han, J.; Zhu, X.; Ge, Q. Competition and Cooperation of Hydrogenation and Deoxygenation Reactions during Hydrodeoxygenation of Phenol on Pt(111). J. Phys. Chem. C 2017, 121, 12249–12260. [Google Scholar] [CrossRef]
- Khan, T.S.; Singh, D.; Samal, P.P.; Krishnamurty, S.; Dhepe, P.L. Mechanistic Investigations on the Catalytic Transfer Hy-drogenation of Lignin-Derived Monomers over Ru Catalysts: Theoretical and Kinetic Studies. ACS Sustain. Chem. Eng. 2021, 9, 14040–14050. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Davis, J.B.A.; Baletto, F.; Johnston, R.L. The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nano-particles. J. Phys. Chem. A 2015, 119, 9703–9709. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. System-Dependent Dispersion Coefficients for the DFT-D3 Treatment of Adsorption Processes on Ionic Surfaces. ChemPhysChem 2011, 12, 3414–3420. [Google Scholar]
Ru@N-CS | Ru (002) | |
---|---|---|
Init state energy | −747.90 | −566.86 |
Final state energy | −747.84 | −566.68 |
Decomposition energy | 0.059 | 0.185 |
Molecule | E(total) | E(surface) | E(molecule) | ΔEads |
---|---|---|---|---|
Phenol | −824.73 | −740.53 | −82.68 | −1.52 |
cyclohexanone | −838.54 | −740.53 | −97.28 | −0.73 |
cyclohexanol | −845.63 | −740.53 | −104.46 | −0.64 |
Molecule | E(total) | E(surface) | E(molecule) | ΔEads |
---|---|---|---|---|
Phenol | −643.64 | −559.58 | −82.68 | −1.37 |
cyclohexanone | −657.78 | −559.58 | −97.28 | −0.93 |
cyclohexanol | −664.56 | −559.58 | −104.46 | −0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, J.; Li, X.; Yang, M.; Wu, Y. Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions. Catalysts 2022, 12, 995. https://doi.org/10.3390/catal12090995
Wang S, Wang J, Li X, Yang M, Wu Y. Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions. Catalysts. 2022; 12(9):995. https://doi.org/10.3390/catal12090995
Chicago/Turabian StyleWang, Shanshan, Jingliang Wang, Xiaoxian Li, Mingde Yang, and Yulong Wu. 2022. "Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions" Catalysts 12, no. 9: 995. https://doi.org/10.3390/catal12090995
APA StyleWang, S., Wang, J., Li, X., Yang, M., & Wu, Y. (2022). Superhydrophobic Ru Catalyst for Highly Efficient Hydrogenation of Phenol under Mild Aqueous Conditions. Catalysts, 12(9), 995. https://doi.org/10.3390/catal12090995