The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review
Abstract
:1. Introduction
2. Properties of SrTiO3
3. Different Synthesis Methods for SrTiO3
4. Applications
4.1. SrTiO3 in Hydrogen Production
4.2. Effect of the Calcination Time and Temperature
4.3. Effect of the Metal Type and Loading Concentration of the Metal
4.4. Photocatalytic Degradation of the Organic Pollutants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neophytou, M.; De Bastiani, M.; Gasparini, N.; Aydin, E.; Ugur, E.; Seitkhan, A.; Moruzzi, F.; Choaie, Y.; Ramadan, A.J.; Troughton, J.R.; et al. Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO3) Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 8090–8097. [Google Scholar] [CrossRef]
- Olivier, L.; Haag, S.; Mirodatos, C.; Van Veen, A.C. Oxidative coupling of methane using catalyst modified dense perovskite membrane reactors. Catal. Today 2009, 142, 34–41. [Google Scholar] [CrossRef]
- Burnat, D.; Heel, A.; Holzer, L.; Kata, D.; Lis, J.; Graule, T. Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. J. Power Sources 2012, 201, 26–36. [Google Scholar] [CrossRef]
- Ramos-Sanchez, J.E.; Camposeco, R.; Lee, S.-W.; Rodríguez-González, V. Sustainable synthesis of AgNPs/strontium-titanate-perovskite-like catalysts for the photocatalytic production of hydrogen. Catal. Today 2020, 341, 112–119. [Google Scholar] [CrossRef]
- Phoon, B.L.; Lai, C.W.; Pan, G.-T.; Yang, T.C.-K.; Juan, J.C. One-pot hydrothermal synthesis of strontium titanate nanoparticles photoelectrode using electrophoretic deposition for enhancing photoelectrochemical water splitting. Ceram. Int. 2018, 44, 9923–9933. [Google Scholar] [CrossRef]
- Gurav, H.R.; Bobade, R.; Das, V.L.; Chilukuri, S. Carbon dioxide reforming of methane over ruthenium substituted strontium titanate perovskite catalysts. Indian J. Chem. Sect. A Inorg. Phys. Theor. Anal. Chem. 2012, 51, 1339–1347. [Google Scholar]
- Gyulavári, T.; Dusnoki, D.; Márta, V.; Yadav, M.; Abedi, M.; Sápi, A.; Kukovecz, Á.; Kónya, Z.; Pap, Z. Dependence of Photocatalytic Activity on the Morphology of Strontium Titanates. Catalysts 2022, 12, 523. [Google Scholar] [CrossRef]
- Ekuma, C.E.; Jarrell, M.; Moreno, J.; Bagayoko, D. First principle electronic, structural, elastic, and optical properties of strontium titanate. AIP Adv. 2012, 2, 012189. [Google Scholar] [CrossRef] [Green Version]
- Eglitis, R.; Popov, A. Systematic trends in (0 0 1) surface ab initio calculations of ABO3 perovskites. J. Saudi Chem. Soc. 2018, 22, 459–468. [Google Scholar] [CrossRef]
- Eglitis, R.; Purans, J.; Popov, A.I.; Jia, R. Systematic trends in YAlO3, SrTiO3, BaTiO3, BaZrO3 (001) and (111) surface ab initio calculations. Int. J. Mod. Phys. B 2019, 33, 1950390. [Google Scholar] [CrossRef]
- Rusevich, L.L.; Kotomin, E.A.; Zvejnieks, G.; Popov, A.I. Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies. Low Temp. Phys. 2020, 46, 1185–1195. [Google Scholar] [CrossRef]
- Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M.H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123, 13664–13671. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Zhu, J.-L.; Wu, C.Q.; Tang, Z.; Kawazoe, Y. Relaxations ofTiO2- and SrO-terminated SrTiO3(001) surfaces. Phys. Rev. B 1998, 58, 8075–8078. [Google Scholar] [CrossRef]
- Lee, D.; Vu, H.; Sun, H.; Pham, T.L.; Nguyen, D.T.; Lee, J.-S.; Fisher, J.G. Growth of (Na0.5Bi0.5)TiO3-SrTiO3 single crystals by solid state crystal growth. Ceram. Int. 2016, 42, 18894–18901. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kanamaru, Y.; Fukushima, M.; Fujimoto, K.; Ito, S. Preparation of Highly Crystallized Strontium Titanate Powders at Room Temperature. J. Am. Ceram. Soc. 2015, 98, 3054–3061. [Google Scholar] [CrossRef]
- Wang, N.; Kong, D.; He, H. Solvothermal synthesis of strontium titanate nanocrystallines from metatitanic acid and photocatalytic activities. Powder Technol. 2010, 207, 470–473. [Google Scholar] [CrossRef]
- Kiran, K.S.; Ashwath Narayana, B.S.; Lokesh, S.V. Enhanced Photocatalytic Activity of Perovskite SrTiO3 Nanorods. Solid State Technol. 2020, 63, 1913–1920. Available online: http://solidstatetechnology.us/index.php/JSST/article/view/2287 (accessed on 29 September 2022).
- Kobayashi, M.; Suzuki, Y.; Goto, T.; Cho, S.H.; Sekino, T.; Asakura, Y.; Yin, S. Low-temperature hydrothermal synthesis and characterization of SrTiO3 photocatalysts for NOx degradation. J. Ceram. Soc. Jpn. 2018, 126, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Malghe, Y.S. Nanosized SrTiO3 powder from oxalate precursor microwave aided synthesis and thermal characterization. J. Therm. Anal. 2010, 102, 831–836. [Google Scholar] [CrossRef]
- Huang, S.-T.; Lee, W.W.; Chang, J.-L.; Huang, W.-S.; Chou, S.-Y.; Chen, C.-C. Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway. J. Taiwan Inst. Chem. Eng. 2014, 45, 1927–1936. [Google Scholar] [CrossRef]
- Xu, J.; Wei, Y.; Huang, Y.; Wang, J.; Zheng, X.; Sun, Z.; Fan, L.; Wu, J. Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity. Ceram. Int. 2014, 40, 10583–10591. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, L.; Li, Y.; Yang, R.; Qu, J.; Li, Y.; Li, X. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation. J. Power Sources 2008, 183, 701–707. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, Y.-D. Kinetic study of Cu(II) adsorption on nanosized BaTiO3 and SrTiO3 photocatalysts. J. Hazard. Mater. 2011, 185, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Kumada, N.; Miura, A.; Takei, T.; Adilina, I.B.; Shimazu, S. Low temperature synthesis of ATiO3 (A: Mg, Ca, Sr, Ba) by using molten salt. J. Ceram. Soc. Jpn. 2013, 121, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhong, L.; Duan, D. Single-step hydrothermal synthesis of strontium titanate nanoparticles from crystalline anatase titanium dioxide. Ceram. Int. 2015, 41, 13516–13524. [Google Scholar] [CrossRef]
- Boston, R.; Guo, J.; Funahashi, S.; Baker, A.L.; Reaney, I.M.; Randall, C.A. Reactive intermediate phase cold sintering in strontium titanate. RSC Adv. 2018, 8, 20372–20378. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Kera, M.; Fujii, I.; Wada, S. A new approach for the preparation of SrTiO3 nanocubes. Ceram. Int. 2012, 39, 3231–3234. [Google Scholar] [CrossRef]
- SLee, J.; Thiyagarajan, P.; Lee, M.J. Synthesis and characterization of strontium titanate powder via a simple polymer solution route. J. Ceram. Process. Res. 2008, 9, 385–388. [Google Scholar]
- Jayabal, P.; Sasirekha, V.; Mayandi, J.; Jeganathan, K.; Ramakrishnan, V. A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application. J. Alloy. Compd. 2014, 586, 456–461. [Google Scholar] [CrossRef]
- Roque-Ruiz, J.-A.J. Sol-Gel Synthesis of Strontium Titanate Nanofibers by Electrospinning. J. Ceram. Sci. Technol. 2019, 10, 29–38. [Google Scholar] [CrossRef]
- Wu, G.; Li, P.; Xu, D.; Luo, B.; Hong, Y.; Shi, W.; Liu, C. Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes. Appl. Surf. Sci. 2015, 333, 39–47. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, Y.; Shen, L.; Li, J.; Li, L.; Zhang, F.; Zhang, Y. Hydrothermal synthesis of Nb5+-doped SrTiO3 mesoporous nanospheres with greater photocatalytic efficiency for Cr(VI) reduction. Powder Technol. 2022, 410, 117886. [Google Scholar] [CrossRef]
- Mourão, H.A.; Lopes, O.F.; Ribeiro, C.; Mastelaro, V.R. Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres. Mater. Sci. Semicond. Process. 2015, 30, 651–657. [Google Scholar] [CrossRef]
- Boga, B.; Steinfeldt, N.; Moustakas, N.G.; Peppel, T.; Lund, H.; Rabeah, J.; Pap, Z.; Cristea, V. Strunk, Role of of SrCO3 on photocatalytic performance of SrTiO3-SrCO3 Composites. Catalysts 2022, 12, 978. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Cian, L.-T. Microwave-Assisted Hydrothermal Synthesis of SrTiO3:Rh for Photocatalytic Z-scheme Overall Water Splitting. Appl. Sci. 2018, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Ashiri, R.; Ajami, R.; Moghtada, A. Sonochemical Synthesis of SrTiO3 Nanocrystals at Low Temperature. Int. J. Appl. Ceram. Technol. 2014, 12, E202–E206. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, N.; Wang, H.; Mao, L. Sacrificial template synthesis of core-shell SrTiO3/TiO2 heterostructured microspheres photocatalyst. Ceram. Int. 2017, 43, 4807–4813. [Google Scholar] [CrossRef]
- Šetinc, T.; Spreitzer, M.; Vengust, D.; Jerman, I.; Suvorov, D. Inherent defects in sol-precipitation/hydrothermally derived SrTiO3 nanopowders. Ceram. Int. 2013, 39, 6727–6734. [Google Scholar] [CrossRef]
- da Silva, L.F.; Avansi, W.; Andrés, J.; Ribeiro, C.; Moreira, M.L.; Longo, E.; Mastelaro, V.R. Long-range and short-range structures of cube-like shape SrTiO3 powders: Microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 12386–12393. [Google Scholar] [CrossRef]
- da Silva, L.F.; Avansi, W.; Moreira, M.L.; Andrés, J.; Longo, E.; Mastelaro, V.R. Novel SrTi1−xFexO3 nanocubes synthesized by microwave-assisted hydrothermal method. CrystEngComm 2012, 14, 4068–4073. [Google Scholar] [CrossRef]
- Hu, Q.; Niu, J.; Zhang, K.-Q.; Yao, M. Fabrication of Mn-Doped SrTiO3/Carbon Fiber with Oxygen Vacancy for Enhanced Photocatalytic Hydrogen Evolution. Materials 2022, 15, 4723. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Chen, S.; Peng, T.; Li, R.; Zhang, J. Fabrication of an Fe-Doped SrTiO3 Photocatalyst with Enhanced Dinitrogen Photofixation Performance. Eur. J. Inorg. Chem. 2019, 2019, 2182–2192. [Google Scholar] [CrossRef]
- Rechberger, F.; Ilari, G.; Willa, C.; Tervoort, E.; Niederberger, M. Processing of Cr doped SrTiO3 nanoparticles into high surface area aerogels and thin films. Mater. Chem. Front. 2017, 1, 1662–1667. [Google Scholar] [CrossRef]
- Łącz, A.; Drożdż, E. Porous Y and Cr–doped SrTiO3 materials—electrical and redox properties. J. Solid State Electrochem. 2019, 23, 2989–2997. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Lofaro, J.C.; Woerner, W.R.; White, M.G.; Su, D.; Orlov, A. Photocatalytic activity of hydrogen evolution over Rh doped SrTiO3 prepared by polymerizable complex method. Chem. Eng. J. 2013, 223, 200–208. [Google Scholar] [CrossRef]
- Murthy, D.H.K.; Matsuzaki, H.; Wang, Q.; Suzuki, Y.; Seki, K.; Hisatomi, T.; Yamada, T.; Kudo, A.; Domen, K.; Furube, A. Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H2 evolution efficiency in doped SrTiO3 photocatalysts. Sustain. Energy Fuels 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Saadetnejad, D.; Yıldırım, R. Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO3. Int. J. Hydrogen Energy 2017, 43, 1116–1122. [Google Scholar] [CrossRef]
- López-Vásquez, A.; Delgado-Niño, P.; Salas-Siado, D. Photocatalytic hydrogen production by strontium titanate-based perovskite doped europium (Sr0.97Eu0.02Zr0.1Ti0.9O3). Environ. Sci. Pollut. Res. 2018, 26, 4202–4214. [Google Scholar] [CrossRef]
- Xie, T.; Wang, Y.; Liu, C.; Xu, L. New Insights into Sensitization Mechanism of the Doped Ce (IV) into Strontium Titanate. Materials 2018, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Sudrajat, H.; Fadlallah, M.M.; Tao, S.; Kitta, M.; Ichikuni, N.; Onishi, H. Dopant site in indium-doped SrTiO3 photocatalysts. Phys. Chem. Chem. Phys. 2020, 22, 19178–19187. [Google Scholar] [CrossRef]
- Bentour, H.; Boujnah, M.; Houmad, M.; El Yadari, M.; Benyoussef, A.; El Kenz, A. DFT study of Se and Te doped SrTiO3 for enhanced visible-light driven phtocatalytic hydrogen production. Opt. Quantum Electron. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Ruzimuradov, O.; Sharipov, K.; Yarbekov, A.; Saidov, K.; Hojamberdiev, M.; Prasad, R.M.; Cherkashinin, G.; Riedel, R. A facile preparation of dual-phase nitrogen-doped TiO2–SrTiO3 macroporous monolithic photocatalyst for organic dye photodegradation under visible light. J. Eur. Ceram. Soc. 2015, 35, 1815–1821. [Google Scholar] [CrossRef]
- Jiang, D.; Sun, X.; Wu, X.; Shi, L.; Du, F. Hydrothermal synthesis of single-crystal Cr-doped SrTiO3 for efficient visible-light responsive photocatalytic hydrogen evolution. Mater. Res. Express 2019, 7, 015047. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, B.; Pu, Y.; Liu, A.; Wang, J.; Ma, K.; Gao, F.; Gao, B.; Zou, W.; Dong, L. Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H2 evolution under visible light irradiation. Appl. Catal. B Environ. 2019, 247, 1–9. [Google Scholar] [CrossRef]
- Li, D.; Ouyang, S.; Xu, H.; Lu, D.; Zhao, M.; Zhang, X.; Ye, J. Synergistic effect of Au and Rh on SrTiO3in significantly promoting visible-light-driven syngas production from CO2and H2O. Chem. Commun. 2016, 52, 5989–5992. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Song, Y.; Chen, J.; Xu, J.; Wang, D.; Mao, Z. Enhanced photocatalytic performance of SrTiO3 powder induced by europium dopants. J. Rare Earths 2020, 39, 541–547. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, X.; Zou, X.; Zhou, Z.; Jiang, Z. Removing Cr (VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates. Chemosphere 2018, 215, 586–595. [Google Scholar] [CrossRef]
- Abbas, H.A.; Jamil, T.S. Nano Sized Fe Doped Strontium Titanate for Photocatalytic Degradation of Dibutyl Phthalate under Visible Light. Adv. Mater. Lett. 2016, 7, 467–471. [Google Scholar] [CrossRef]
- Li, B.; Hong, J.; Ai, Y.; Hu, Y.; Shen, Z.; Li, S.; Zou, Y.; Zhang, S.; Wang, X.; Zhao, G.; et al. Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. J. Catal. 2021, 399, 142–149. [Google Scholar] [CrossRef]
- Lu, L.; Ni, S.; Liu, G.; Xu, X. Structural dependence of photocatalytic hydrogen production over La/Cr co-doped perovskite compound ATiO3 (A = Ca, Sr and Ba). Int. J. Hydrogen Energy 2017, 42, 23539–23547. [Google Scholar] [CrossRef]
- Zou, F.; Jiang, Z.; Qin, X.; Zhao, Y.; Jiang, L.; Zhi, J.; Xiao, T.; Edwards, P.P. Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity. Chem. Commun. 2012, 48, 8514–8516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Kato, K.; Fujimori, H.; Yamakata, A.; Sakata, Y. Investigation on the highly active SrTiO3 photocatalyst toward overall H2O splitting by doping Na ion. J. Catal. 2020, 390, 81–89. [Google Scholar] [CrossRef]
- Gholamrezaei, S.; Niasari, M.S.; Dadkhah, M.; Sarkhosh, B. New modified sol–gel method for preparation SrTiO3 nanostructures and their application in dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2015, 27, 118–125. [Google Scholar] [CrossRef]
- Yoneyama, H.; Koizumi, M.; Tamura, H. Photolysis of Water on Illuminated Strontium Titanium Trioxide. Bull. Chem. Soc. Jpn. 1979, 52, 3449–3450. [Google Scholar] [CrossRef]
- Zhu, L.; Gu, W.; Chen, J.; Liu, H.; Zhang, Y.; Wu, Q.; Zhang, Y.; Fu, Z.; Lu, Y. Improving the photocatalytic hydrogen production of SrTiO3 by in situ loading ethylene glycol as a co-catalyst. Inorg. Chem. Front. 2020, 7, 4133–4141. [Google Scholar] [CrossRef]
- Mai, X.T.; Bui, D.N.; Pham, V.K.; Hien, T.; Nguyen, L.; To, T.; Nguyen, L. Effect of CuO Loading on the Photocatalytic Activity of SrTiO3 for Hydrogen Evolution. Inorganics 2022, 10, 130. [Google Scholar] [CrossRef]
- Guo, M.; Liu, Q.; Wu, M.; Lv, T.; Jia, L. Novel reduced graphene oxide wrapped-SrTiO3 flower-like nanostructure with Ti–C bond for free noble metal decomposition of formic acid to hydrogen. Chem. Eng. J. 2018, 334, 1886–1896. [Google Scholar] [CrossRef]
- Zou, J.-P.; Zhang, L.-Z.; Luo, S.-L.; Leng, L.-H.; Luo, X.-B.; Zhang, M.-J.; Luo, Y.; Guo, G.-C. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. Int. J. Hydrogen Energy 2012, 37, 17068–17077. [Google Scholar] [CrossRef]
- Zhou, D.; Zhai, P.; Hu, G.; Yang, J. Upconversion luminescence and enhanced photocatalytic hydrogen production for Er3+ doped SrTiO3 nanopaeticles. Chem. Phys. Lett. 2018, 711, 77–80. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, J.; Zhang, Y.; Jiang, M.; Xu, S.; Liang, Q.; Li, Z. Shape-controlled synthesis of golf-like, star-like, urchin-like and flower-like SrTiO3 for highly efficient photocatalytic degradation and H2 production. J. Alloy. Compd. 2019, 817, 152796. [Google Scholar] [CrossRef]
- Jia, A.; Liang, X.; Su, Z.; Zhu, T.; Liu, S. Synthesis and the effect of calcination temperature on the physical–chemical properties and photocatalytic activities of Ni,La codoped SrTiO3. J. Hazard. Mater. 2010, 178, 233–242. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.F.; Lopes, O.F.; de Mendonça, V.R.; Carvalho, K.T.G.; Longo, E.; Ribeiro, C.; Mastelaro, V.R. An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO3Nanoparticles. Photochem. Photobiol. 2016, 92, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Puangpetch, T.; Sreethawong, T.; Chavadej, S. Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading. Int. J. Hydrogen Energy 2010, 35, 6531–6540. [Google Scholar] [CrossRef]
- Sakata, Y.; Miyoshi, Y.; Maeda, T.; Ishikiriyama, K.; Yamazaki, Y.; Imamura, H.; Ham, Y.; Hisatomi, T.; Kubota, J.; Yamakata, A.; et al. Photocatalytic property of metal ion added SrTiO3 to Overall H2O splitting. Appl. Catal. A Gen. 2015, 521, 227–232. [Google Scholar] [CrossRef]
- Takata, T.; Domen, K. Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. J. Phys. Chem. C 2009, 113, 19386–19388. [Google Scholar] [CrossRef]
- Gao, H.; Yang, H.; Wang, S. Hydrothermal synthesis, growth mechanism, optical properties and photocatalytic activity of cubic SrTiO3 particles for the degradation of cationic and anionic dyes. Optik 2018, 175, 237–249. [Google Scholar] [CrossRef]
- Trawiński, J.; Skibiński, R. Multivariate comparison of photocatalytic properties of thirteen nanostructured metal oxides for water purification. J. Environ. Sci. Health Part A 2019, 54, 851–864. [Google Scholar] [CrossRef]
- Galloni, M.G.; Cerrato, G.; Giordana, A.; Falletta, E.; Bianchi, C.L. Sustainable Solar Light Photodegradation of Diclofenac by Nano- and Micro-Sized SrTiO3. Catalysts 2022, 12, 804. [Google Scholar] [CrossRef]
- Song, Y.; Hao, X.; Dai, W.; Zhao, J. Aqueous Synthesis and Photocatalytic Performance of Bi5O7I Microflowers. Nano 2019, 14, 1950050. [Google Scholar] [CrossRef]
- Wu, G.; Xiao, L.; Gu, W.; Shi, W.; Jiang, D.; Liu, C. Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO3 nanocube coated CdS microsphere heterojunctions. RSC Adv. 2016, 6, 19878–19886. [Google Scholar] [CrossRef]
- Nunes, M.J.; Lopes, A.; Pacheco, M.J.; Ciríaco, L. Visible-Light-Driven AO7 Photocatalytic Degradation and Toxicity Removal at Bi-Doped SrTiO3. Materials 2022, 15, 2465. [Google Scholar] [CrossRef] [PubMed]
Synthesis Type | Precursors Used | Particle Size | Key Findings of the Work | Ref. |
---|---|---|---|---|
solid state | SrCO3, TiO2, Bi2O3, Na2CO3 | not applicable | single crystals of mixed titanate oxides with Sr, were obtained | [14] |
room temperature | Sr(OH)2·8H2O, hydrous titania gel | 80–100 nm | high crystallinity at a low temperature, in the absence of solvents/additional reagents | [15] |
solvothermal | Sr(NO3)2, H2TiO3 | 20–30 nm | growth of the SrTiO3 nanocrystallites was very sensitive to the EtOH:H2O ratio; a 1:1 ratio resulted in the crystal formation of SrTiO3 | [16] |
sol gel | Sr(NO3)2, titanium isopropoxide, citric acid | ~39 nm | SrTiO3 nanorods with an enhanced photocatalytic activity was obtained | [17] |
hydrothermal | Sr(OH)2·8H2O, titanium(IV) bis(ammonium lactato)dihydroxide (TALH) | 20–40 nm | SrTiO3 nanoparticles prepared at low temperatures, compared to the conventional methods, exhibited a large surface area and the highest degradation rate for NO gas | [18] |
microwave aided thermal | strontium titanyl oxalate hydrate SrTiO(C2O4)24H2O (STO) | 28–68 nm | cubic SrTiO3 nanopowders synthesized at a low temperature and in a shorter period of time resulted in a smaller particle size | [19] |
Designed Photocatalyst | Application | Determining Factors of the Study | Ref. |
---|---|---|---|
In-doped SrTiO3 | water splitting | substitution of the Ti4+ cations by In3+ at the B site | [50] |
Se and Te- doped SrTiO3 | hydrogen production | band gap narrowing due to the decreased ionic strength of the Sr-O bonds and the increased covalency strength of the Ti-O bonds on the doping | [51] |
N2-doped TiO2-SrTiO3 | rhodamine B (Rh B) dye photodegradation | red-shift of the absorption edge upon the nitrogen doping leading to the band gap reduction | [52] |
Cr-doped SrTiO3 | hydrogen evolution | Cr dopants replaced the Ti sites, an excellent charge transfer and separation efficiency, owing to a single crystal | [53] |
g-C3N4/SrTiO3 | hydrogen production | interfacial coupling between g-C3N4 and SrTiO3 by forming the type II heterojunction and the built-in electric field in the interface | [54] |
Au and Rh-doped SrTiO3 | syngas production | interband transmission of Au and the role of Rh as a photoelectron accumulator and CH4 reforming | [55] |
Eu-doped SrTiO3 | Rh B degradation | formation of smaller particles with a higher surface area | [56] |
Cr-doped SrTiO3 | Cr (VI) removal | substitution of Cr3+ for Sr2+ resulted in the red-shift of the absorption edge, visible to light, nanoplate morphology a with larger surface area obtained | [57] |
Fe-doped SrTiO3 | dibutyl phthalate | decreased average crystallite size with a narrow band gap | [58] |
Cu-doped SrTiO3 | selective alcohol oxidation of benzyl alcohol into benzyl aldehyde | Cu dopants induce abundant oxygen vacancies and introduce the inter-band springboard into SrTiO3, imparting a response under visible light and near the infrared region | [59] |
La/Cr co-doped SrTiO3 | hydrogen production | light absorbance and catalytic performance are strongly governed by the Ti-O bond length and the Ti-O-Ti bond angle | [60] |
N-doped SrTiO3 | dye degradation (methylene blue, methyl orange and RhB) | use of glycine resulted in a mesoporous structure, besides a higher surface area, due to N-doping and oxygen vacancy | [61] |
SrTiO3 doped with Na ions | water splitting | introduction of the NA ions induced a crystal deformation and oxygen vacancies | [62] |
Catalyst system | Amount of Hydrogen Evolution | Optimum Loading Amount | Medium | Influential Factor | Ref. |
---|---|---|---|---|---|
CuO-loaded SrTiO3 | CuO/ SrTiO3: 5811 µmol Pure SrTiO3: 34 µmol | 1.5 wt. % of CuO | Aqueous methanol solution | Decreased recombination rate of the electron/hole pairs, due to CuO loading | [66] |
Reduced graphene oxide (RGO)_SrTiO3 | 334.68 µmolg−1 | 6 wt. % of RGO | Formic acid/sodium formate | High surface area and more active sites | [67] |
Au/Al-SrTiO3 | 347 μmol/h.g.cat | 0.25% Au, 1% Al at different alcohol concentrations | Aqueous solution of methanol, ethanol and isopropyl alcohol | Al doping increased band energy of SrTiO3, metallic Al showing plasmonic effects, similar to Au | [47] |
Rh-doped SrTiO3 | 48.1 μmol h−1 | 1 mol% | Aqueous methanol solution | Rh4+ cations in the bulk and on the surface | [45] |
Zn-doped SrTiO3 | 73.2 μmol h−1 | * NA | Aqueous methanol solution | Zn ions changed the crystal and band structures and significantly promoted the carrier mobility of the catalysts | [68] |
Er3+ doped SrTiO3 | NA | 5 mol% | Aqueous methanol solution | Er3+ doping leads to the decrease of the band gap | [69] |
Mn-doped SrTiO3/Carbon Fiber | 267.69 μmol/g h | 5% Mn | Mixture of Na2S and Na2SO3 | Mn doping and oxygen vacancies extended the light absorption boundary to the visible light direction | [41] |
Ag/SrTiO3 | 400 μmol h−1 g−1 | * NA | Aqueous ethanol solution | Silver nanoparticles (AgNPs) act as a sink for the photogenerated electrons, boosting up the separation of the charge carriers | [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, N.; Hernadi, K. The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review. Catalysts 2022, 12, 1619. https://doi.org/10.3390/catal12121619
Sharma N, Hernadi K. The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review. Catalysts. 2022; 12(12):1619. https://doi.org/10.3390/catal12121619
Chicago/Turabian StyleSharma, Nikita, and Klara Hernadi. 2022. "The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review" Catalysts 12, no. 12: 1619. https://doi.org/10.3390/catal12121619
APA StyleSharma, N., & Hernadi, K. (2022). The Emerging Career of Strontium Titanates in Photocatalytic Applications: A Review. Catalysts, 12(12), 1619. https://doi.org/10.3390/catal12121619