In-Situ Catalytic Preparation of Two-Dimensional BCN/Graphene Composite for Anti-Corrosion Application
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. CVD Growth of BCN 2D Films
3.2. In-Situ Catalytic Growth of BCN/Gr 2D Composite Films
3.3. Preparation of BCN-BCN and BCN-Gr 2D Composites by Transfer Method
3.4. Electrochemical Test
3.5. Salt Spray Test
3.6. Nano Scratch Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohm, S. Graphene against corrosion. Nat. Nanotechnol. 2014, 9, 741–742. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.A.; Toghan, A.; Mostafa, M.S.; Lan, C.; Ge, G.L. Environmental remediation through catalytic inhibition of steel corrosion by schiff’s bases: Electrochemical and biological aspects. Catalysts 2022, 12, 838. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Chen, C.Y.; Liu, L. Preparation and anticorrosion performance of TiO2-based nanocontainers. J. Petrochem. Univ. 2021, 34, 7–12. [Google Scholar]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Adriana, B.; Figueiredo, B.; Silva, R.; et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Crit. Rev. Solid State 2022, 47, 309–355. [Google Scholar] [CrossRef]
- Wu, Y.M.; Zhao, W.J.; Qiang, Y.J.; Chen, Z.J.; Wang, L.P.; Gao, X.L.; Fang, Z.W. π-π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: Synthesis and anti-corrosion application. Carbon 2020, 159, 292–302. [Google Scholar] [CrossRef]
- Schriver, M.; Regan, W.; Gannett, W.J.; Zaniewski, A.M.; Crommie, M.F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768. [Google Scholar] [CrossRef]
- Ollik, K.; Lieder, M. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10, 883. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselvo, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.A.; Kinloch, I.A.; Derby, B. Atmospheric pressure catalytic vapor deposition of graphene on liquid In and Cu-In alloy substrates. Catalysts 2021, 11, 1318. [Google Scholar] [CrossRef]
- Surwade, S.P.; Smirnov, S.N.; Vlassiouk, I.V.; Unocic, R.R.; Veith, G.M.; Dai, S.; Mahurin, S.M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.H.; Liao, J.; He, B.Z.; Zhang, F.; Zhang, F.; Huang, X.H.; Zhou, L. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.W.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Yang, H.; Wen, L.H.; Yi, Z.; Zhou, Z.G.; Dai, B.; Zhang, J.G.; Wu, X.W.; Wu, P.H. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Adv. 2022, 12, 7821–7829. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Cai, R.; Long, F.; Wang, J. Development and application of tetrabromobisphenol a imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 2015, 134, 435–442. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.B.; Yang, W.X.; Yi, Z.; Wu, X.W.; Wang, S.F.; Yi, Y.G.; Wu, P.H. Design of ultra-narrow band graphene refractive index sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Luo, X.H.; Zhong, J.W.; Zhou, Q.L.; Du, S.; Yuan, S.; Liu, Y.L. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Appl. Mater. Inter. 2018, 10, 18400–18415. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Kaloni, T.P.; Joshi, R.P.; Adhikari, N.P.; Schwingenschlogl, U. Band gap tunning in BN-doped graphene systems with high carrier mobility. Appl. Phys. Lett. 2014, 104, 73116. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Liu, Z.; Reddy, A.L.M.; Narayanan, T.; Taha-Tijerina, J.; Peng, J.; Gao, G.H.; Lou, J.; Vajtai, R.; Ajayan, P.M. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 2012, 24, 4878–4895. [Google Scholar] [CrossRef] [PubMed]
- Iyyamperumal, E.; Wang, S.Y.; Dai, L.M. Vertically aligned BCN nanotubes with high capacitance. ACS Nano 2012, 6, 5259–5265. [Google Scholar] [CrossRef]
- Garel, J.; Zhao, C.; Popovitz-Biro, R.; Golberg, D.; Wang, W.; Joselevich, E. BCN nanotubes as highly sensitive torsional electromechanical transducers. Nano Lett. 2014, 14, 6132–6137. [Google Scholar] [CrossRef] [PubMed]
- Puyoo, G.; Teyssandier, F.; Pailler, R.; Labrugère, C.; Chollon, G. Boron carbonitride coatings synthesized by LPCVD, structure and properties. Carbon 2017, 122, 19–46. [Google Scholar] [CrossRef] [Green Version]
- Li, X.S.; Magnuson, C.W.; Venugopal, A.; Tromp, R.M.; Hannon, J.B.; Vogel, E.M.; Colombo, L.; Ruoff, R.S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819. [Google Scholar] [CrossRef]
- Nanayakkara, T.R.; Wijewardena, U.K.; Withanage, S.M.; Kriisa, A.; Samaraweera, R.L.; Mani, R.G. Strain relaxation in different shapes of single crystal graphene grown by chemical vapor deposition on copper. Carbon 2020, 168, 684–690. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Duan, C.Y.; Liu, H.Y.; Chen, Y.F.; Wang, Y. Graphene coating for anti-corrosion and the investigation of failure mechanism. J. Phys. D: Appl. Phys. 2017, 50, 114001. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; Neill, A.O.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.A.I.; Fu, L.E.I.; Peng, H.; Liu, Z.F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.Y.; Zhu, Y.X.; Gu, W.; Li, M.Q.; Zhao, D.; Zhao, Z.H.; Chen, Y.F.; Wang, Y. Atomic coupling growth of graphene on carbon steel for exceptional anti-icing performance. ACS Sustain. Chem. Eng. 2018, 6, 17359–17367. [Google Scholar] [CrossRef]
- Somani, P.R.; Somani, S.P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59. [Google Scholar] [CrossRef]
- Robertson, A.W.; Warner, J.H. Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 2011, 11, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Ramnani, P.; Neupane, M.R.; Ge, S.; Balandin, A.A.; Lake, R.K.; Mulchandani, A. Raman spectra of twisted CVD bilayer graphene. Carbon 2017, 123, 302–306. [Google Scholar] [CrossRef]
- Attri, R.; Roychowdhury, S.; Biswas, K.; Rao, C.N.R. Low thermal conductivity of 2D borocarbonitride nanosheets. J. Solid State Chem. 2020, 282, 121105. [Google Scholar] [CrossRef]
- Levendorf, M.P.; Kim, C.J.; Brown, L.; Huang, P.Y.; Havener, R.W.; Muller, D.A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632. [Google Scholar] [CrossRef]
- Linss, V.; Rodil, S.E.; Reinke, P.; Garnier, M.G.; Oelhafen, P.; Kreissig, U.; Richter, F. Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films 2004, 467, 76–87. [Google Scholar] [CrossRef]
- Cheng, L.K.; Meng, J.H.; Pan, X.J.; Lu, Y.; Zhang, X.W.; Gao, M.L.; Yin, Z.G.; Wang, D.G.; Wang, Y.; You, J.B.; et al. Two-dimensional hexagonal boron–carbon–nitrogen atomic layers. Nanoscale 2019, 11, 10454–10462. [Google Scholar] [CrossRef]
- Huh, J.H.; Kim, S.H.; Chu, J.H.; Kim, S.Y.; Kim, J.H.; Kwon, S.Y. Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating. Nanoscale 2014, 6, 4379–4386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, Y.C.; Lou, J. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution. Nanotechnology 2016, 27, 364004. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.Q.; Fan, M.; Liang, P. Effect of nitric acid passivation time on corrosion behavior of S32750 super duplex stainless steel. J. Liaoning Petrochem. Univ. 2020, 40, 78–83. [Google Scholar]
- Das, S.; Lahiri, D.; Lee, D.; Agarwal, A.; Choi, W. Measurements of the adhesion energy of graphene to metallic substrates. Carbon 2013, 59, 121–129. [Google Scholar] [CrossRef]
Sample | Method | Growth Time of BCN (min) |
---|---|---|
BCN 1 | CVD grown BCN | 10 |
BCN 2 | 20 | |
BCN 3 | 40 | |
BCN/Gr 1 | CVD grown BCN/Gr composite | 10 |
BCN/Gr 2 | 20 | |
BCN/Gr 3 | 40 | |
BCN-Gr 1 | CVD grown BCN + transferred BCN | 10 |
BCN-Gr 2 | 20 | |
BCN-Gr 3 | 40 | |
BCN-BCN 1 | CVD grown BCN + transferred Gr | 10 |
BCN-BCN 2 | 20 | |
BCN-BCN 3 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Li, X.; Ji, Y.; He, L.; Qian, J.; Zhao, Z. In-Situ Catalytic Preparation of Two-Dimensional BCN/Graphene Composite for Anti-Corrosion Application. Catalysts 2022, 12, 1618. https://doi.org/10.3390/catal12121618
Duan C, Li X, Ji Y, He L, Qian J, Zhao Z. In-Situ Catalytic Preparation of Two-Dimensional BCN/Graphene Composite for Anti-Corrosion Application. Catalysts. 2022; 12(12):1618. https://doi.org/10.3390/catal12121618
Chicago/Turabian StyleDuan, Chunyang, Xiaojie Li, Yongjun Ji, Liuyang He, Jianhua Qian, and Zenghua Zhao. 2022. "In-Situ Catalytic Preparation of Two-Dimensional BCN/Graphene Composite for Anti-Corrosion Application" Catalysts 12, no. 12: 1618. https://doi.org/10.3390/catal12121618
APA StyleDuan, C., Li, X., Ji, Y., He, L., Qian, J., & Zhao, Z. (2022). In-Situ Catalytic Preparation of Two-Dimensional BCN/Graphene Composite for Anti-Corrosion Application. Catalysts, 12(12), 1618. https://doi.org/10.3390/catal12121618