Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photo(electro)catalytic Performances of ZnO-NRs, CdS-NPs, and CdS-NPs@ZnO-NRs Catalysts
2.2. The Possible Mechanism for the PEC-OER and Photocatalytic TC Degradation Reactions
2.3. Comparative Analysis of the Photocatalytic Degradation Performances of CdS-NPs@ZnO-NRs Heterojunction
2.4. Stability and Recyclability of CdS-NPs@ZnO-NRs Z-Scheme Heterojunction Photoelectrocatalyst
3. Materials and Methods
3.1. Materials
3.2. Characterizations
3.3. Synthesis of CdS-NPs@ZnO-NRs Core-Shell Heterojunction
3.4. Photo(electro)chemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Li, C.; Domen, K. Recent Developments in Heterogeneous Photocatalysts for Solar-Driven Overall Water Splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Shi, W.; Wang, H.; Han, M.; Guan, W.; Huang, H.; Liu, Y.; Kang, Z. Study on Highly Enhanced Photocatalytic Tetracycline Degradation of Type II AgI/CuBi2O4 and Z-Scheme AgBr/CuBi2O4 Heterojunction Photocatalysts. J. Hazard. Mater. 2018, 349, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-C.; Liu, Y.-L.; Xu, Y.-T.; Ruan, Y.-F.; Fan, G.-C.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Three-Dimensional TiO2@Cu2O@Nickel Foam Electrodes: Design, Characterization, and Validation of O2-Independent Photocathodic Enzymatic Bioanalysis. ACS Appl. Mater. Interfaces 2019, 11, 25702–25707. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Li, Q.; Li, H.; Xu, J.; Li, X.; Zhao, H.; Tang, Y.; Zhao, G.; Li, H.; et al. Constructing Three-Dimensional Porous Carbon Framework Embedded with FeSe2 Nanoparticles as an Anode Material for Rechargeable Batteries. ACS Appl. Mater. Interfaces 2018, 10, 38862–38871. [Google Scholar] [CrossRef]
- Feng, X.; Wang, P.; Hou, J.; Qian, J.; Ao, Y.; Wang, C. Significantly Enhanced Visible Light Photocatalytic Efficiency of Phosphorus Doped TiO2 with Surface Oxygen Vacancies for Ciprofloxacin Degradation: Synergistic Effect and Intermediates Analysis. J. Hazard. Mater. 2018, 351, 196–205. [Google Scholar] [CrossRef]
- Basu, M.; Garg, N.; Ganguli, A.K. A Type-II Semiconductor (ZnO/CuS Heterostructure) for Visible Light Photocatalysis. J. Mater. Chem. A 2014, 2, 7517–7525. [Google Scholar] [CrossRef]
- Balu, S.; Velmurugan, S.; Palanisamy, S.; Chen, S.-W.; Velusamy, V.; Yang, T.C.K.; El-Shafey, E.-S.I. Synthesis of α-Fe2O3 Decorated g-C3N4/ZnO Ternary Z-Scheme Photocatalyst for Degradation of Tartrazine Dye in Aqueous Media. J. Taiwan Inst. Chem. Eng. 2019, 99, 258–267. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, H.; Kim, S.; Seo, S.; Song, J.; Choi, B.-U.; Choi, S.Y.; Park, H.; Ryu, S.; Oh, J.; et al. Long-Term Stabilized High-Density CuBi2O4/NiO Heterostructure Thin Film Photocathode Grown by Pulsed Laser Deposition. Chem. Commun. 2019, 55, 12447–12450. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, Y.; Guan, X.; Cao, J.; Li, W.; Long, X.; Tan, X. Enhanced Performances of PbS Quantum-Dots-Modified MoS2 Composite for NO2 Detection at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11, 9438–9447. [Google Scholar] [CrossRef]
- Chowdhury, A.; Balu, S.; Venkatesvaran, H.; Chen, S.-W.; Yang, T.C.-K. Facile Construction of CuFe2O4/p-g-C3N4 p-n Heterojunction with Boosted Photocatalytic Activity and Sustainability for Organic Degradation Reactions under Visible-Light. Surf. Interfaces 2022, 34, 102329. [Google Scholar] [CrossRef]
- Velmurugan, S.; Balu, S.; Palanisamy, S.; Yang, T.C.-K.; Velusamy, V.; Chen, S.-W.; El-Shafey, E.-S.I. Synthesis of Novel and Environmental Sustainable AgI-Ag2S Nanospheres Impregnated g-C3N4 Photocatalyst for Efficient Degradation of Aqueous Pollutants. Appl. Surf. Sci. 2020, 500, 143991. [Google Scholar] [CrossRef]
- Xiao, L.; Youji, L.; Feitai, C.; Peng, X.; Ming, L. Facile Synthesis of Mesoporous Titanium Dioxide Doped by Ag-Coated Graphene with Enhanced Visible-Light Photocatalytic Performance for Methylene Blue Degradation. RSC Adv. 2017, 7, 25314–25324. [Google Scholar] [CrossRef] [Green Version]
- Balu, S.; Chen, Y.-L.; Chen, S.-W.; Yang, T.C.-K. Rational Synthesis of BixFe1−xVO4 Heterostructures Impregnated Sulfur-Doped g-C3N4: A Visible-Light-Driven Type-II Heterojunction Photo(Electro)Catalyst for Efficient Photodegradation of Roxarsone and Photoelectrochemical OER Reactions. Appl. Catal. B Environ. 2022, 304, 120852. [Google Scholar] [CrossRef]
- Venkatesvaran, H.; Balu, S.; Chowdhury, A.; Chen, S.-W.; Yang, T.C.-K. Photo–Redox Properties of –SO3H Functionalized Metal-Free g-C3N4 and Its Application in the Photooxidation of Sunset Yellow FCF and Photoreduction of Cr (VI). Catalysts 2022, 12, 751. [Google Scholar] [CrossRef]
- Menz, J.; Olsson, O.; Kümmerer, K. Antibiotic Residues in Livestock Manure: Does the EU Risk Assessment Sufficiently Protect against Microbial Toxicity and Selection of Resistant Bacteria in the Environment? J. Hazard. Mater. 2019, 379, 120807. [Google Scholar] [CrossRef]
- Finley, R.L.; Collignon, P.; Larsson, D.G.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. CLEAN–Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Cao, H.L.; Cai, F.Y.; Yu, K.; Zhang, Y.Q.; Lü, J.; Cao, R. Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped-Carbon Composites Derived from in Situ Carbonization of Metal-Organic Frameworks. ACS Sustain. Chem. Eng. 2019, 7, 10847–10854. [Google Scholar] [CrossRef]
- Mohammad, A.; Khan, M.E.; Cho, M.H.; Yoon, T. Adsorption Promoted Visible-Light-Induced Photocatalytic Degradation of Antibiotic Tetracycline by Tin Oxide/Cerium Oxide Nanocomposite. Appl. Surf. Sci. 2021, 565, 150337. [Google Scholar] [CrossRef]
- Fu, Y.; Peng, L.; Zeng, Q.; Yang, Y.; Song, H.; Shao, J.; Liu, S.; Gu, J. High Efficient Removal of Tetracycline from Solution by Degradation and Flocculation with Nanoscale Zerovalent Iron. Chem. Eng. J. 2015, 270, 631–640. [Google Scholar] [CrossRef]
- Harris, M. Pharmaceutical Microbiology. J. Med. Educ. Res. 1964, 39. [Google Scholar] [CrossRef]
- Michalova, E.; Novotna, P.; Schlegelova, J. Tetracyclines in Veterinary Medicine and Bacterial Resistance to Them. Vet. Med. 2004, 49, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Modarai, M.; Naylor, N.R.; Boyd, S.E.; Atun, R.; Barlow, J.; Holmes, A.H.; Johnson, A.; Robotham, J. V Quantifying Drivers of Antibiotic Resistance in Humans: A Systematic Review. Lancet Infect. Dis. 2018, 18, e368–e378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiang, Z.; Adams, C. Potentiometric Determination of Acid Dissociation Constants (PKa) for Human and Veterinary Antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wang, Y.; Zhong, Y.; Ning, J.; Hu, Y. Microwave-Assisted Deposition of Metal Sulfide/Oxide Nanocrystals onto a 3D Hierarchical Flower-like TiO2 Nanostructure with Improved Photocatalytic Activity. J. Mater. Chem. A 2013, 1, 8101–8104. [Google Scholar] [CrossRef]
- Kim, H.G.; Borse, P.H.; Choi, W.; Lee, J.S. Photocatalytic Nanodiodes for Visible-Light Photocatalysis. Angew. Chemie Int. Ed. 2005, 44, 4585–4589. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Li, M.; Shen, S.; Wang, X.; Wang, Y.; Feng, Z.; Shi, J.; Han, H.; Li, C. Photocatalytic Overall Water Splitting Promoted by an α–β Phase Junction on Ga2O3. Angew. Chemie Int. Ed. 2012, 51, 13089–13092. [Google Scholar] [CrossRef]
- Tak, Y.; Kim, H.; Lee, D.; Yong, K. Type-II CdS Nanoparticle–ZnO Nanowire Heterostructure Arrays Fabricated by a Solution Process: Enhanced Photocatalytic Activity. Chem. Commun. 2008, 38, 4585–4587. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J.R. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. [Google Scholar] [CrossRef]
- Silva, L.A.; Ryu, S.Y.; Choi, J.; Choi, W.; Hoffmann, M.R. Photocatalytic Hydrogen Production with Visible Light over Pt-Interlinked Hybrid Composites of Cubic-Phase and Hexagonal-Phase CdS. J. Phys. Chem. C 2008, 112, 12069–12073. [Google Scholar] [CrossRef]
- Vaishnav, J.K.; Arbuj, S.S.; Rane, S.B.; Amalnerkar, D.P. One Dimensional CdS/ZnO Nanocomposites: An Efficient Photocatalyst for Hydrogen Generation. RSC Adv. 2014, 4, 47637–47642. [Google Scholar] [CrossRef]
- Zong, X.; Wu, G.; Yan, H.; Ma, G.; Shi, J.; Wen, F.; Wang, L.; Li, C. Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation. J. Phys. Chem. C 2010, 114, 1963–1968. [Google Scholar] [CrossRef]
- Meena, P.L.; Bhardwaj, P.; Kumar, Y.; Singh, S.P. Synthesis and Characterization of One Dimensional ZnO Nanorods. AIP Conf. Proc. 2021, 2352, 1–5. [Google Scholar] [CrossRef]
- Soylu, S.; Kara, M.; Türkmen, M.; Şahin, B. Synergistic Effect of Foeniculum Vulgare Essential Oil on the Antibacterial Activities of Ag- and Cu-Substituted ZnO Nanorods (ZnO-NRs) against Food, Human and Plant Pathogenic Bacterial Disease Agents. Inorg. Chem. Commun. 2022, 146, 110103. [Google Scholar] [CrossRef]
- Hashem, E.M.; Hamza, M.A.; El-Shazly, A.N.; Abd El-Rahman, S.A.; El-Tanany, E.M.; Mohamed, R.T.; Allam, N.K. Novel Z-Scheme/Type-II CdS@ZnO/g-C3N4 Ternary Nanocomposites for the Durable Photodegradation of Organics: Kinetic and Mechanistic Insights. Chemosphere 2021, 277, 128730. [Google Scholar] [CrossRef]
- Belakehal, R.; Atacan, K.; Güy, N.; Megriche, A.; Özacar, M. Fabrication of Heterostructured CdS/g-C3N4/ZnFe2O4 Nanocomposite Synthesized through Ultrasonic-Assisted Method for Efficient Photocatalytic Hydrogen Production. Appl. Surf. Sci. 2022, 602, 154315. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Wang, Z.; Wei, W.; Wang, K.; Wei, X. Constructing 0D/2D Z-Scheme Heterojunction of CdS/g-C3N4 with Enhanced Photocatalytic Activity for H2 Evolution. Catal. Lett. 2021, 151, 3550–3561. [Google Scholar] [CrossRef]
- Xu, K.; Han, Q. DMSO as a Solvent/Ligand to Monodisperse CdS Spherical Nanoparticles. J. Nanoparticle Res. 2016, 18, 1–10. [Google Scholar] [CrossRef]
- Li, L.; Gao, H.; Liu, G.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Synthesis of Carnation Flower-like Bi2O2CO3 Photocatalyst and Its Promising Application for Photoreduction of Cr(VI). Adv. Powder Technol. 2022, 33, 103481. [Google Scholar] [CrossRef]
- Habibi, M.H.; Rahmati, M.H. Fabrication and Characterization of ZnO@CdS Core-Shell Nanostructure Using Acetate Precursors: XRD, FESEM, DRS, FTIR Studies and Effects of Cadmium Ion Concentration on Band Gap. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2014, 133, 13–18. [Google Scholar] [CrossRef]
- Yu, B.; Li, Y.; Wang, Y.; Geng, L. A New Eulytite-Type Pb3Bi(PO4)3:Eu3+ Red-Emitting Phosphor: Synthesis, Structure and Photoluminescence Characteristics. J. Lumin. 2020, 220, 116978. [Google Scholar] [CrossRef]
- Yu, B.; Li, Y.; Zhang, R.; Li, H.; Wang, Y. A Novel Thermally Stable Eulytite-Type NaBaBi2(PO4)3:Eu3+ Red-Emitting Phosphor for Pc-WLEDs. J. Alloys Compd. 2021, 852, 157020. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Saranya, K.; Pandikumar, A.; Lin, K.C. Palladium and Silver Nanoparticles Embedded on Zinc Oxide Nanostars for Photocatalytic Degradation of Pesticides and Herbicides. Chem. Eng. J. 2021, 410, 128434. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Yi, Z.; Wang, S.; Ma, J.; Gao, H.; Wu, X.; Liu, G.; Yang, H. PH-Induced Structural Evolution, Photodegradation Mechanism and Application of Bismuth Molybdate Photocatalyst. Adv. Powder Technol. 2022, 33, 103858. [Google Scholar] [CrossRef]
- Wang, L.; Tsang, C.S.; Liu, W.; Zhang, X.; Zhang, K.; Ha, E.; Kwok, W.M.; Park, J.H.; Suk Lee, L.Y.; Wong, K.Y. Disordered Layers on WO3 Nanoparticles Enable Photochemical Generation of Hydrogen from Water. J. Mater. Chem. A 2019, 7, 221–227. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Di, Q.; Zhao, H.; Liang, B.; Yang, J. Mutual Effects of Fluorine Dopant and Oxygen Vacancies on Structural and Luminescence Characteristics of F Doped SnO2 Nanoparticles. Materials 2017, 10, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali-Löytty, H.; Louie, M.W.; Singh, M.R.; Li, L.; Sanchez Casalongue, H.G.; Ogasawara, H.; Crumlin, E.J.; Liu, Z.; Bell, A.T.; Nilsson, A.; et al. Ambient-Pressure XPS Study of a Ni-Fe Electrocatalyst for the Oxygen Evolution Reaction. J. Phys. Chem. C 2016, 120, 2247–2253. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Gao, H.; Liu, G.; Pu, Z.; Wang, S.; Yi, Z.; Wu, X.; Yang, H. Preparation of Core-Shell Heterojunction Photocatalysts by Coating CdS Nanoparticles onto Bi4Ti3O12 Hierarchical Microspheres and Their Photocatalytic Removal of Organic Pollutants and Cr(VI) Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 633, 127918. [Google Scholar] [CrossRef]
- Gu, Y.; Guo, B.; Yi, Z.; Wu, X.; Zhang, J.; Yang, H. Morphology Modulation of Hollow-Shell ZnSn(OH)6 for Enhanced Photodegradation of Methylene Blue. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 653, 129908. [Google Scholar] [CrossRef]
- Jia, K.; Liu, G.; Lang, D.-N.; Chen, S.-F.; Yang, C.; Wu, R.-L.; Wang, W.; Wang, J.-D. Degradation of Tetracycline by Visible Light over ZnO Nanophotocatalyst. J. Taiwan Inst. Chem. Eng. 2022, 136, 104422. [Google Scholar] [CrossRef]
- Alinda Shaly, A.; Hannah Priya, G.; Matharasi, A.; Surya Prabha, A.; Mary Linet, J. The Nature and Role of α-MnO2 Nanowires in the Photocatalytic Degradation of the Antibiotic Tetracycline. Mater. Today Proc. 2022, 68, 282–286. [Google Scholar] [CrossRef]
- Zhang, R.; Dong, J.X.; Gao, G.L.; Wang, X.L.; Yao, Y.-F. Facile Synthesis of Amorphous C3N4ZnxOy (x, y = 0.32–1.10) with High Photocatalytic Efficiency for Antibiotic Degradation. Catalysts 2020, 10, 514. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Liu, Y.; Xue, B.; Chen, J.; Wang, H.; Liu, Y. Facile Preparation of a Novel Bi2WO6/Calcined Mussel Shell Composite Photocatalyst with Enhanced Photocatalytic Performance. Catalysts 2020, 10, 1166. [Google Scholar] [CrossRef]
- Ni, T.; Li, Q.; Yan, Y.; Wang, F.; Cui, X.; Yang, Z.; Wang, Y.; Yang, Z.; Chang, K.; Liu, G. N,Fe-Doped Carbon Dot Decorated Gear-Shaped WO3 for Highly Efficient UV-Vis-NIR-Driven Photocatalytic Performance. Catalysts 2020, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Hu, H.; Lin, Y.; Zhang, J.; Hu, Y.H. Visible Light Photocatalytic Degradation of Tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842. [Google Scholar] [CrossRef]
- Zeng, Q.; Xie, W.; Chen, Z.; Wang, X.; Akinoglu, E.M.; Zhou, G.; Shui, L. Influence of the Facets of Bi24O31Br10 Nanobelts and Nanosheets on Their Photocatalytic Properties. Catalysts 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Xiao, X.; Zuo, X.; Nan, J.; Zhang, W. Efficient Adsorption and Visible-Light Photocatalytic Degradation of Tetracycline Hydrochloride Using Mesoporous BiOI Microspheres. J. Hazard. Mater. 2012, 209–210, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Sun, X.; Jin, Y.; Han, J.; Wang, L.; Liu, F. Au/Pd/g-C3N4 Nanocomposites for Photocatalytic Degradation of Tetracycline Hydrochloride. J. Mater. Sci. 2019, 54, 5445–5456. [Google Scholar] [CrossRef]
S.No | Catalyst | Conc. (ppm) | Cat. Load (mg) | Time (min) | Deg. (%) | References |
---|---|---|---|---|---|---|
1. | SDS/ZnO | 40 | 20 | 150 | 49 | [50] |
2. | α-MnO2 | 100 | 50 | 70 | 51.55 | [51] |
3. | C3N4ZnxOy | 10 | 50 | 120 | 92.7 | [52] |
4. | Bi2WO6/CMS | 20 | 20 | 150 | 78.4 | [53] |
5. | N, Fe-CDs/G-WO3 | 10 | 50 | 180 | 54.5 | [54] |
6. | TiO2 | 10 | 10 | 120 | 35.7 | [55] |
7. | Bi24O31Br10 | 20 | 100 | 60 | 91 | [56] |
8. | BiOI microspheres | 40 | 50 | 120 | 94 | [57] |
9. | Au/Pd/g-C3N4 | 20 | 20 | 210 | 92.8 | [58] |
10. | CdS-NPs@ZnO-NRs | 10 | 20 | 90 | 94.07 | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balu, S.; Venkatesvaran, H.; Lan, K.-W.; C.-K. Yang, T. Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline. Catalysts 2022, 12, 1601. https://doi.org/10.3390/catal12121601
Balu S, Venkatesvaran H, Lan K-W, C.-K. Yang T. Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline. Catalysts. 2022; 12(12):1601. https://doi.org/10.3390/catal12121601
Chicago/Turabian StyleBalu, Sridharan, Harikrishnan Venkatesvaran, Kuo-Wei Lan, and Thomas C.-K. Yang. 2022. "Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline" Catalysts 12, no. 12: 1601. https://doi.org/10.3390/catal12121601
APA StyleBalu, S., Venkatesvaran, H., Lan, K.-W., & C.-K. Yang, T. (2022). Synthesis of Highly Efficient (0D/1D) Z-Scheme CdS-NPs@ZnO-NRs Visible-Light-Driven Photo(electro)catalyst for PEC Oxygen Evolution Reaction and Removal of Tetracycline. Catalysts, 12(12), 1601. https://doi.org/10.3390/catal12121601