Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mesoporous TiO2/Glass Fibers: Synthesis and Characterization
2.2. Photocatalytic Degradation of Spiked PhACs
2.3. Photocatalytic Degradation of Naturally Occurring PhACs
3. Materials and Methods
3.1. Selection of Pharmaceutical Compounds
3.2. Synthesis and Characterization of the Mesoporous TiO2 Coating on Glass Fiber
3.3. Microstructural Characterization
3.4. PhACs Concentration Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaramillo, M.F.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.; Ternes, T.; Gibert, M.; Olejniczak, K. Indirect Human Exposure to Pharmaceuticals via Drinking Water. Toxicol. Lett. 2003, 142, 157–167. [Google Scholar] [CrossRef]
- Mezzanotte, V.; Antonelli, M.; Citterio, S.; Nurizzo, C. Wastewater Disinfection Alternatives: Chlorine, Ozone, Peracetic Acid, and UV Light. Water Environ. Res. 2007, 79, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; Mascolo, G.; Földényi, R.; Passino, R. Disinfection By-Products Formation during Hypochlorination of Isoproturon Contaminated Groundwater. Water Sci. Technol. 1996, 34, 351–358. [Google Scholar] [CrossRef]
- Lopez, A.; Mascolo, G.; Tiravanti, G.; Passino, R. Degradation of Herbicides (Ametryn and Isoproturon) during Water Disinfection by Means of Two Oxidants (Hypochlorite and Chlorine Dioxide). Water Sci. Technol. 1997, 35, 129–136. [Google Scholar] [CrossRef]
- Lopez, A.; Mascolo, G.; Detomaso, A.; Lovecchio, G.; Villani, G. Temperature Activated Degradation (Mineralization) of 4-Chloro-3-Methyl Phenol by Fenton’s Reagent. Chemosphere 2005, 59, 397–403. [Google Scholar] [CrossRef]
- Mascolo, G.; Lopez, A.; Passino, R.; Ricco, G.; Tiravanti, G. Degradation of Sulphur Containing S-Triazines during Water Chlorination. Water Res. 1994, 28, 2499–2506. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Activation of Peroxymonosulfate by Sludge-Derived Biochar for the Degradation of Triclosan in Water and Wastewater. Chem. Eng. J. 2019, 356, 350–358. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.; Fu, W.; Shang, C.; Li, Y.; Chen, Y.; Gan, W.; Fang, J. PPCP Degradation by UV/Chlorine Treatment and Its Impact on DBP Formation Potential in Real Waters. Water Res. 2016, 98, 309–318. [Google Scholar] [CrossRef]
- De la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L.F.; Pulgarín, C. Degradation of Emergent Contaminants by UV, UV/H2O2 and Neutral Photo-Fenton at Pilot Scale in a Domestic Wastewater Treatment Plant. Water Res. 2013, 47, 5836–5845. [Google Scholar] [CrossRef] [PubMed]
- Pizzigallo, M.D.R.; Ruggiero, P.; Crecchio, C.; Mascolo, G. Oxidation of Chloroanilines at Metal Oxide Surfaces. J. Agric. Food Chem. 1998, 46, 2049–2054. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Emerging Contaminants from Industrial and Municipal Waste. Available online: https://www.springerprofessional.de/en/emerging-contaminants-from-industrial-and-municipal-waste/2873406 (accessed on 17 December 2021).
- Raja, P.; Bozzi, A.; Jardim, W.F.; Mascolo, G.; Renganathan, R.; Kiwi, J. Reductive/Oxidative Treatment with Superior Performance Relative to Oxidative Treatment during the Degradation of 4-Chlorophenol. Appl. Catal. B Environ. 2005, 59, 249–257. [Google Scholar] [CrossRef]
- Pasini, S.M.; Valério, A.; Yin, G.; Wang, J.; de Souza, S.M.A.G.U.; Hotza, D.; de Souza, A.A.U. An Overview on Nanostructured TiO2–Containing Fibers for Photocatalytic Degradation of Organic Pollutants in Wastewater Treatment. J. Water Process Eng. 2021, 40, 101827. [Google Scholar] [CrossRef]
- Yuan, R.; Zhu, Y.; Zhou, B.; Hu, J. Photocatalytic Oxidation of Sulfamethoxazole in the Presence of TiO2: Effect of Matrix in Aqueous Solution on Decomposition Mechanisms. Chem. Eng. J. 2019, 359, 1527–1536. [Google Scholar] [CrossRef]
- Murgolo, S.; De Ceglie, C.; Di Iaconi, C.; Mascolo, G. Novel TiO2-Based Catalysts Employed in Photocatalysis and Photoelectrocatalysis for Effective Degradation of Pharmaceuticals (PhACs) in Water: A Short Review. Curr. Opin. Green Sustain. Chem. 2021, 30, 100473. [Google Scholar] [CrossRef]
- Pal, S.; Laera, A.M.; Licciulli, A.; Catalano, M.; Taurino, A. Biphase TiO2 Microspheres with Enhanced Photocatalytic Activity. Ind. Eng. Chem. Res. 2014, 53, 7931–7938. [Google Scholar] [CrossRef]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent Advances in Photocatalysis for Environmental Applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of Photocatalytic Efficiencies of TiO2 in Suspended and Immobilised Form for the Photocatalytic Degradation of Nitrobenzenesulfonic Acids. Appl. Catal. B Environ. 2002, 37, 301–308. [Google Scholar] [CrossRef]
- Kim, D.S.; Park, Y.S. Photocatalytic Decolorization of Rhodamine B by Immobilized TiO2 onto Silicone Sealant. Chem. Eng. J. 2006, 116, 133–137. [Google Scholar] [CrossRef]
- Padmanabhan, S.K.; Pal, S.; Ul Haq, E.; Licciulli, A. Nanocrystalline TiO2–Diatomite Composite Catalysts: Effect of Crystallization on the Photocatalytic Degradation of Rhodamine B. Appl. Catal. A Gen. 2014, 485, 157–162. [Google Scholar] [CrossRef]
- Yacou, C.; Smart, S.; Diniz da Costa, J.C. Mesoporous TiO2 Based Membranes for Water Desalination and Brine Processing. Sep. Purif. Technol. 2015, 147, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, O.; Ghaderi, E. Self-Accumulated Ag Nanoparticles on Mesoporous TiO2 Thin Film with High Bactericidal Activities. Surf. Coat. Technol. 2010, 204, 3676–3683. [Google Scholar] [CrossRef]
- Hofstadler, K.; Bauer, R.; Novalic, S.; Heisler, G. New Reactor Design for Photocatalytic Wastewater Treatment with TiO2 Immobilized on Fused-Silica Glass Fibers: Photomineralization of 4-Chlorophenol. Environ. Sci. Technol. 1994, 28, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Fukugaichi, S. Fixation of Titanium Dioxide Nanoparticles on Glass Fiber Cloths for Photocatalytic Degradation of Organic Dyes. ACS Omega 2019, 4, 15175–15180. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, S.; Mäder, E.; Ma, P.-C. Controlled Synthesis of Hierarchical TiO2 Nanoparticles on Glass Fibres and Their Photocatalytic Performance. Dalton Trans. 2014, 43, 12743–12753. [Google Scholar] [CrossRef]
- Petronella, F.; Truppi, A.; Dell’Edera, M.; Agostiano, A.; Curri, M.L.; Comparelli, R. Scalable Synthesis of Mesoporous TiO2 for Environmental Photocatalytic Applications. Materials 2019, 12, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licciulli, A.; Riccardis, A.D.; Pal, S.; Nisi, R.; Mele, G.; Cannoletta, D. Ethylene Photo-Oxidation on Copper Phthalocyanine Sensitized TiO2 Films under Solar Radiation. J. Photochem. Photobiol. A Chem. 2017, 346, 523–529. [Google Scholar] [CrossRef]
- Murgolo, S.; Yargeau, V.; Gerbasi, R.; Visentin, F.; El Habra, N.; Ricco, G.; Lacchetti, I.; Carere, M.; Curri, M.L.; Mascolo, G. A New Supported TiO2 Film Deposited on Stainless Steel for the Photocatalytic Degradation of Contaminants of Emerging Concern. Chem. Eng. J. 2017, 318, 103–111. [Google Scholar] [CrossRef]
- Carlson, J.C.; Stefan, M.I.; Parnis, J.M.; Metcalfe, C.D. Direct UV Photolysis of Selected Pharmaceuticals, Personal Care Products and Endocrine Disruptors in Aqueous Solution. Water Res. 2015, 84, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Santos, L. Degradation and Removal Methods of Antibiotics from Aqueous Matrices—A Review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef] [PubMed]
- Afonso-Olivares, C.; Fernández-Rodríguez, C.; Ojeda-González, R.J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J.; Rodríguez, J.M.D. Estimation of Kinetic Parameters and UV Doses Necessary to Remove Twenty-Three Pharmaceuticals from Pre-Treated Urban Wastewater by UV/H2O2. J. Photochem. Photobiol. A Chem. 2016, 329, 130–138. [Google Scholar] [CrossRef]
- Paredes, L.; Murgolo, S.; Dzinun, H.; Dzarfan Othman, M.H.; Ismail, A.F.; Carballa, M.; Mascolo, G. Application of Immobilized TiO2 on PVDF Dual Layer Hollow Fibre Membrane to Improve the Photocatalytic Removal of Pharmaceuticals in Different Water Matrices. Appl. Catal. B Environ. 2019, 240, 9–18. [Google Scholar] [CrossRef]
- Lian, L.; Yan, S.; Zhou, H.; Song, W. Overview of the Phototransformation of Wastewater Effluents by High-Resolution Mass Spectrometry. Environ. Sci. Technol. 2020, 54, 1816–1826. [Google Scholar] [CrossRef]
- Kim, I.; Tanaka, H. Photodegradation Characteristics of PPCPs in Water with UV Treatment. Environ. Int. 2009, 35, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Calza, P.; Medana, C.; Padovano, E.; Giancotti, V.; Baiocchi, C. Identification of the Unknown Transformation Products Derived from Clarithromycin and Carbamazepine Using Liquid Chromatography/High-Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1687–1704. [Google Scholar] [CrossRef]
- Martínez-Piernas, A.B.; Nahim-Granados, S.; Polo-López, M.I.; Fernández-Ibáñez, P.; Murgolo, S.; Mascolo, G.; Agüera, A. Identification of Transformation Products of Carbamazepine in Lettuce Crops Irrigated with Ultraviolet-C Treated Water. Environ. Pollut. 2019, 247, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Franz, S.; Falletta, E.; Arab, H.; Murgolo, S.; Bestetti, M.; Mascolo, G. Degradation of Carbamazepine by Photo(Electro)Catalysis on Nanostructured TiO2 Meshes: Transformation Products and Reaction Pathways. Catalysts 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Buchicchio, A.; Bianco, G.; Sofo, A.; Masi, S.; Caniani, D. Biodegradation of Carbamazepine and Clarithromycin by Trichoderma Harzianum and Pleurotus Ostreatus Investigated by Liquid Chromatography—High-Resolution Tandem Mass Spectrometry (FTICR MS-IRMPD). Sci. Total Environ. 2016, 557–558, 733–739. [Google Scholar] [CrossRef]
- Castro, G.; Casado, J.; Rodríguez, I.; Ramil, M.; Ferradás, A.; Cela, R. Time-of-Flight Mass Spectrometry Assessment of Fluconazole and Climbazole UV and UV/H2O2 Degradability: Kinetics Study and Transformation Products Elucidation. Water Res. 2016, 88, 681–690. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Nélieu, S.; Shankar, M.V.; Kerhoas, L.; Einhorn, J. Phototransformation of Monuron Induced by Nitrate and Nitrite Ions in Water: Contribution of Photonitration. J. Photochem. Photobiol. A Chem. 2008, 193, 1–9. [Google Scholar] [CrossRef]
- Boix, C.; Ibáñez, M.; Sancho, J.V.; Parsons, J.R.; de Voogt, P.; Hernández, F. Biotransformation of Pharmaceuticals in Surface Water and during Waste Water Treatment: Identification and Occurrence of Transformation Products. J. Hazard. Mater. 2016, 302, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.P.; Sahu, A.; Singh, S. Identification and Characterization of Degradation Products of Irbesartan Using LC–MS/TOF, MSn, on-Line H/D Exchange and LC–NMR. J. Pharm. Biomed. Anal. 2010, 51, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Aravind, U.K.; Aravindakumar, C.T. Photocatalytic Degradation of Lignocaine in Aqueous Suspension of TiO2 Nanoparticles: Mechanism of Degradation and Mineralization. J. Environ. Chem. Eng. 2018, 6, 3556–3564. [Google Scholar] [CrossRef]
- Lege, S.; Sorwat, J.; Yanez Heras, J.E.; Zwiener, C. Abiotic and Biotic Transformation of Torasemide—Occurrence of Degradation Products in the Aquatic Environment. Water Res. 2020, 177, 115753. [Google Scholar] [CrossRef] [PubMed]
Spiked PhACs | Elemental Composition | m/z (Da) | k (min−1) | |
---|---|---|---|---|
Photolysis (Average ± SD) | Photocatalysis Mesoporous TiO2 on Glass Fibers (Average ± SD) | |||
CBZ | C15H12N2O | 237.1014 | 0.029 ± 0.001 | 0.068 ± 0.023 |
CTZ | C21H25N2O3Cl | 389.1610 | 0.402 ± 0.066 | 0.289 ± 0.022 |
CLR | C38H69NO13 | 748.4762 | 0.051 ± 0.004 | 0.061 ± 0.007 |
CLI | C15H17N2O2Cl | 293.1050 | 0.233 ± 0.020 | 0.183 ± 0.011 |
DCF | C14H11NO2Cl2 | 296.0241 | - | - |
IBS | C25H28N6O | 429.2362 | 0.050 ± 0.001 | 0.059 ± 0.002 |
LDC | C14H22N2O | 235.1794 | 0.061 ± 0.002 | 0.065 ± 0.010 |
TOR | C16H20N4O3S | 349.1306 | 0.081 ± 0.003 | 0.088 ± 0.011 |
TMP | C14H18N4O3 | 291.1439 | 0.028 ± 0.001 | 0.062 ± 0.014 |
PhACs | Elemental Composition | m/z (Da) | k (min−1) | |
---|---|---|---|---|
Photolysis (Avarage ± SD) | Photocatalysis Mesoporous TiO2 on Glass Fibers (Avarage ± SD) | |||
Flecainide | C17H20N2O3F6 | 415.1440 | 0.032 ± 0.001 | 0.061 ± 0.016 |
Gabapentin | C9H17NO2 | 172.1331 | 0.021 ± 0.001 | 0.052 ± 0.019 |
Irbesartan 446 | C25H30N6O2 | 447.2486 | 0.049 ± 0.001 | 0.073 ± 0.011 |
Lamotrigine | C9H7N5Cl2 | 256.0150 | 0.028 ± 0.001 | 0.046 ± 0.014 |
Telmisartan | C33H30N4O2 | 515.2428 | 0.058 ± 0.002 | 0.081 ± 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Ceglie, C.; Pal, S.; Murgolo, S.; Licciulli, A.; Mascolo, G. Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation. Catalysts 2022, 12, 41. https://doi.org/10.3390/catal12010041
De Ceglie C, Pal S, Murgolo S, Licciulli A, Mascolo G. Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation. Catalysts. 2022; 12(1):41. https://doi.org/10.3390/catal12010041
Chicago/Turabian StyleDe Ceglie, Cristina, Sudipto Pal, Sapia Murgolo, Antonio Licciulli, and Giuseppe Mascolo. 2022. "Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation" Catalysts 12, no. 1: 41. https://doi.org/10.3390/catal12010041