Selectivity Dependence of 1,1-Difluoro-1-Chloroethane Dehydrohalogenation on the Metal–Support Interaction over SrF2 Catalyst
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Preparation of SrF2 Embedded in Carbon Catalyst
3.1.2. Preparation of SrF2 Embedded in N-Doped Carbon Catalyst
3.1.3. Preparation of SrF2 Catalyst
3.2. Catalyst Characterization
3.3. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef]
- Taguet, A.; Ameduri, B.; Boutevin, B. Crosslinking of vinylidene fluoride-containing fluoropolymers. In Crosslinking in Materials Science; Ameduri, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 184, pp. 127–211. [Google Scholar]
- Wang, L.; Liu, S.; He, H.Q.; Zhang, J.L. Dual-level direct dynamics study on the hydrogen abstraction reaction of fluorine atom with 1,1-difluoro-1-chloroethane. Can. J. Chem.-Revue Canadienne De Chimie 2011, 89, 1396–1402. [Google Scholar] [CrossRef]
- Huybrechts, G.; Van Assche, G.; Van der Auwera, S. Kinetics and mechanism of the pyrolysis of 1-chloro-1,1-difluoroethane in the presence of additives. Int. J. Chem. Kinet. 1998, 30, 359–366. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Zhang, C.; Zhou, S.; Wang, H.; Tang, H.; Liu, H. Preparation of N-Doped Activated Carbon for Catalytic Pyrolysis of 1-Chloro-1,1-difluoroethane to Vinylidene Fluoride. Chemistryselect 2018, 3, 1015–1018. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Tang, H.; Li, Y.; Liu, H. Preparation of N-doped ordered mesoporous carbon and catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Microporous Mesoporous Mater. 2019, 275, 200–206. [Google Scholar] [CrossRef]
- Wang, Z.; Han, W.; Liu, H. EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Crystengcomm 2019, 21, 1691–1700. [Google Scholar] [CrossRef]
- Lan, G.J.; Wang, Y.; Qiu, Y.Y.; Wang, X.L.; Liang, J.; Han, W.F.; Tang, H.D.; Liu, H.Z.; Liu, J.; Li, Y. Wheat flour-derived N-doped mesoporous carbon extrudate as superior metal-free catalysts for acetylene hydrochlorination. Chem. Commun. 2018, 54, 623–626. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, X.; Qin, Y.C.; Qiang, L.; He, Y.P.; Su, D.S.; Song, L.J.; Sun, Z.L. Direct Conversion of Acetylene and 1,2-Dichloroethane to Vinyl Chloride Monomer over a Supported Carbon Nitride Catalyst: Tunable Activity Controlled by the Synthesis Temperature. Ind. Eng. Chem. Res. 2019, 58, 5404–5413. [Google Scholar] [CrossRef]
- Liu, B.; Han, W.F.; Li, X.L.; Li, L.C.; Tang, H.D.; Lu, C.S.; Li, Y.; Li, X.N. Quasi metal organic framework with highly concentrated Cr2O3 molecular clusters as the efficient catalyst for dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Catal. B-Environ. 2019, 257, 117939. [Google Scholar] [CrossRef]
- Wang, H.L.; Han, W.F.; Li, X.L.; Liu, B.; Tang, H.D.; Li, Y. Solution Combustion Synthesis of Cr2O3 Nanoparticles and the Catalytic Performance for Dehydrofluorination of 1,1,1,3,3-Pentafluoropropane to 1,3,3,3-Tetrafluoropropene. Molecules 2019, 24, 361. [Google Scholar] [CrossRef]
- Han, W.F.; Wang, Z.K.; Li, X.J.; Tang, H.D.; Xi, M.; Li, Y.; Liu, H.Z. Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane. J. Mater. Sci. 2016, 51, 11002–11013. [Google Scholar] [CrossRef]
- Han, W.F.; Wang, J.C.; Chen, L.L.; Yang, L.T.; Wang, S.C.; Xi, M.; Tang, H.D.; Liu, W.C.; Song, W.Y.; Zhang, J.J.; et al. Reverting fluoroform back to chlorodifluoromethane and dichlorofluoromethane: Intermolecular Cl/F exchange with chloroform at moderate temperatures. Chem. Eng. J. 2019, 355, 594–601. [Google Scholar] [CrossRef]
- Han, W.F.; Liu, B.; Li, X.L.; Yang, L.T.; Wang, J.C.; Tang, H.D.; Liu, W.C. Combustion Synthesis of Amorphous Al and Cr Composite as the Catalyst for Dehydrofluorination of 1,1-Difluoroethane. Ind. Eng. Chem. Res. 2018, 57, 12774–12783. [Google Scholar] [CrossRef]
- Fang, X.X.; Liao, W.M.; Song, J.D.; Jia, W.Z.; Wang, Y.; Lu, J.Q.; Luo, M.F. Effect of Fe promotion on the performance of V2O5/MgF2 catalysts for gas-phase dehydrofluorination of 1,1,1,3,3-pentafluoropropane. Appl. Surf. Sci. 2019, 490, 365–371. [Google Scholar] [CrossRef]
- Mao, W.; Jia, Z.H.; Bai, Y.B.; Qin, Y.; Wang, B.; Han, S.; Zhang, W.; Kou, L.G.; Lu, J.; Kemnitz, E. Fe/hollow nano-MgF2: A green and highly-efficient alternative to classical Cr-based catalysts for the gas-phase fluorination reaction. Catal. Sci. Technol. 2019, 9, 3015–3019. [Google Scholar] [CrossRef]
- Han, W.F.; Liu, B.; Kang, Y.K.; Wang, Z.K.; Yu, W.; Yang, H.; Liu, Y.N.; Lu, J.Q.; Tang, H.D.; Li, Y.; et al. Experimental and DFT Mechanistic Study of Dehydrohalogenation of 1-Chloro-1,1-difluoroethane over Metal Fluorides. Ind. Eng. Chem. Res. 2019, 58, 18149–18159. [Google Scholar] [CrossRef]
- Oh, S.; Kim, Y.K.; Jung, C.H.; Doh, W.H.; Park, J.Y. Effect of the metal-support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides. Chem. Commun. 2018, 54, 8174–8177. [Google Scholar] [CrossRef]
- Da Silva, A.B.; Jordao, E.; Mendes, M.J.; Fouilloux, P. Effect of metal-support interaction during selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on platinum based bimetallic catalysts. Appl. Catal. A-Gen. 1997, 148, 253–264. [Google Scholar] [CrossRef]
- Jenness, G.R.; Schmidt, J.R. Unraveling the Role of Metal-Support Interactions in Heterogeneous Catalysis: Oxygenate Selectivity in Fischer-Tropsch Synthesis. ACS Catal. 2013, 3, 2881–2890. [Google Scholar] [CrossRef]
- Gross, E.; Somorjai, G.A. The Impact of Electronic Charge on Catalytic Reactivity and Selectivity of Metal-Oxide Supported Metallic Nanoparticles. Top. Catal. 2013, 56, 1049–1058. [Google Scholar] [CrossRef]
- Wang, Z.K.; Han, W.F.; Tang, H.D.; Liu, H.Z. CaBaFx composite as robust catalyst for the pyrolysis of 1-chloro-1,1-difluoroethane to vinylidene fluoride. Catal. Commun. 2019, 120, 42–45. [Google Scholar] [CrossRef]
- Han, W.F.; Zhang, C.P.; Wang, H.L.; Zhou, S.L.; Tang, H.D.; Yang, L.T.; Wang, Z.K. Sub-nano MgF2 embedded in carbon nanofibers and electrospun MgF2 nanofibers by one-step electrospinning as highly efficient catalysts for 1,1,1-trifluoroethane dehydrofluorination. Catal. Sci. Technol. 2017, 7, 6000–6012. [Google Scholar] [CrossRef]
- Al-Newaiser, F.A.; Al-Thabaiti, S.A.; Al-Youbi, A.O.; Obaid, A.Y.; Gabal, M.A. Thermal decomposition kinetics of strontium oxalate. Chem. Pap. 2007, 61, 370–375. [Google Scholar] [CrossRef]
- Dollimore, D.; Heal, G.R.; Passalis, N.P. The thermal analysis of strontium oxalate. Thermochim. Acta 1985, 92, 543–546. [Google Scholar] [CrossRef]
- Nagase, K.; Sato, K.; Tanaka, N. Thermal Dehydration and Decomposition Reactions of Bivalent Metal Oxalates in the Solid State. Bull. Chem. Soc. Jpn. 1975, 48, 439–442. [Google Scholar] [CrossRef]
- Han, W.F.; Wang, H.L.; Liu, B.; Li, X.L.; Tang, H.D.; Li, Y.; Liu, H.Z. PVDF mediated fabrication of freestanding AlF3 sub-microspheres: Facile and controllable synthesis of alpha, beta and theta-AlF3. Mater. Chem. Phys. 2020, 240, 122287. [Google Scholar] [CrossRef]
- Song, S.H.; Son, J.H.; Budiman, A.W.; Choi, M.J.; Chang, T.S.; Shin, C.H. The influence of calcination temperature on catalytic activities in a Co based catalyst for CO2 dry reforming. Korean J. Chem. Eng. 2014, 31, 224–229. [Google Scholar] [CrossRef]
- Harris, L.A.; Goff, J.D.; Carmichael, A.Y.; Riffle, J.S.; Harburn, J.J.; St Pierre, T.G.; Saunders, M. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater. 2003, 15, 1367–1377. [Google Scholar] [CrossRef]
- Yang, X.N.; van Duren, J.K.J.; Janssen, R.A.J.; Michels, M.A.J.; Loos, J. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, 2151–2158. [Google Scholar] [CrossRef]
- Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano 2015, 9, 2556–2564. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.S.A.; Ismail, A.F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Kodama, M.; Shiraishi, S.; Hatori, H.; Zhu, Z.H.; Lu, G.Q. Nitrogen-Enriched Nonporous Carbon Electrodes with Extraordinary Supercapacitance. Adv. Funct. Mater. 2009, 19, 1800–1809. [Google Scholar] [CrossRef]
- Ortega, K.F.; Arrigo, R.; Frank, B.; Schlogl, R.; Trunschke, A. Acid-Base Properties of N-Doped Carbon Nanotubes: A Combined Temperature-Programmed Desorption, X-ray Photoelectron Spectroscopy, and 2-Propanol Reaction Investigation. Chem. Mater. 2016, 28, 6826–6839. [Google Scholar] [CrossRef]
- Arrigo, R.; Havecker, M.; Schlogl, R.; Su, D.S. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem. Commun. 2008, 4891–4893. [Google Scholar] [CrossRef]
- Guo, L.S.; Zhang, P.P.; Cui, Y.; Liu, G.B.; Wu, J.H.; Yang, G.H.; Yoneyama, Y.; Tsubaki, N. One-Pot Hydrothermal Synthesis of Nitrogen Functionalized Carbonaceous Material Catalysts with Embedded Iron Nanoparticles for CO2 Hydrogenation. ACS Sustain. Chem. Eng. 2019, 7, 8331–8339. [Google Scholar] [CrossRef]
- Olive, G. (Ca, Sr)F2 surface-roughness effect on angle-resolved xps measurements. Surf. Sci. 1993, 297, 83–90. [Google Scholar] [CrossRef]
- Walas, M.; Lewandowski, T.; Synak, A.; Lapinski, M.; Sadowski, W.; Koscielska, B. Eu3+ doped tellurite glass ceramics containing SrF2 nanocrystals: Preparation, structure and luminescence properties. J. Alloys Compd. 2017, 696, 619–626. [Google Scholar] [CrossRef]
- Han, Y.J.; Park, S.J. Hydrogen Storage Behaviors of Porous Carbons Derived from Poly(vinylidene fluoride). J. Nanosci. Nanotechnol. 2017, 17, 8075–8080. [Google Scholar] [CrossRef]
- Wang, J.C.; Han, W.F.; Wang, S.C.; Tang, H.D.; Liu, W.C.; Li, Y.; Lu, C.S.; Zhang, J.J.; Kennedy, E.M.; Li, X.N. Synergistic catalysis of carbon-partitioned LaF3-BaF2 composites for the coupling of CH4 with CHF3 to VDF. Catal. Sci. Technol. 2019, 9, 1338–1348. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Liu, Y.; Mardochee, K.M.; Wang, Z.; Wang, S.; Yu, W.; Zhang, J.; Han, W. Selectivity Dependence of 1,1-Difluoro-1-Chloroethane Dehydrohalogenation on the Metal–Support Interaction over SrF2 Catalyst. Catalysts 2020, 10, 355. https://doi.org/10.3390/catal10030355
Liu W, Liu Y, Mardochee KM, Wang Z, Wang S, Yu W, Zhang J, Han W. Selectivity Dependence of 1,1-Difluoro-1-Chloroethane Dehydrohalogenation on the Metal–Support Interaction over SrF2 Catalyst. Catalysts. 2020; 10(3):355. https://doi.org/10.3390/catal10030355
Chicago/Turabian StyleLiu, Wucan, Yongnan Liu, Kabozya M. Mardochee, Zhikun Wang, Shucheng Wang, Wei Yu, Jianjun Zhang, and Wenfeng Han. 2020. "Selectivity Dependence of 1,1-Difluoro-1-Chloroethane Dehydrohalogenation on the Metal–Support Interaction over SrF2 Catalyst" Catalysts 10, no. 3: 355. https://doi.org/10.3390/catal10030355
APA StyleLiu, W., Liu, Y., Mardochee, K. M., Wang, Z., Wang, S., Yu, W., Zhang, J., & Han, W. (2020). Selectivity Dependence of 1,1-Difluoro-1-Chloroethane Dehydrohalogenation on the Metal–Support Interaction over SrF2 Catalyst. Catalysts, 10(3), 355. https://doi.org/10.3390/catal10030355